ad_users_data_update.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
  1. import datetime
  2. import traceback
  3. from threading import Timer
  4. from my_utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu
  5. from my_config import set_config
  6. from log import Log
  7. config_, _ = set_config()
  8. log_ = Log()
  9. redis_helper = RedisHelper()
  10. features = [
  11. 'apptype',
  12. 'group',
  13. 'sharerate_all',
  14. 'sharerate_ad'
  15. ]
  16. def predict_user_group_share_rate(user_group_initial_df, dt, data_params, rule_params, param):
  17. """预估用户组对应的有广告时分享率"""
  18. # 获取对应的参数
  19. data_key = param.get('data')
  20. data_param = data_params.get(data_key)
  21. rule_key = param.get('rule')
  22. rule_param = rule_params.get(rule_key)
  23. # 获取对应的用户组特征
  24. user_group_df = user_group_initial_df.copy()
  25. user_group_df['apptype'] = user_group_df['apptype'].astype(int)
  26. user_group_df = user_group_df[user_group_df['apptype'] == data_param]
  27. user_group_df['sharerate_all'].fillna(0, inplace=True)
  28. user_group_df['sharerate_ad'].fillna(0, inplace=True)
  29. user_group_df['sharerate_all'] = user_group_df['sharerate_all'].astype(float)
  30. user_group_df['sharerate_ad'] = user_group_df['sharerate_ad'].astype(float)
  31. # 获取有广告时所有用户组近30天的分享率
  32. ad_all_group_share_rate = user_group_df[user_group_df['group'] == 'allmids']['sharerate_ad'].values[0]
  33. # 获取对应的用户分组数据
  34. user_group_list = rule_param.get('group_list')
  35. user_group_df = user_group_df[user_group_df['group'].isin(user_group_list)]
  36. # 去除对应无广告用户组
  37. if rule_param.get('remove_no_ad_group') is True:
  38. user_group_df = user_group_df[~user_group_df['group'].isin(rule_param.get('no_ad_mid_group_list'))]
  39. # 计算用户组有广告时分享率
  40. user_group_df['group_ad_share_rate'] = \
  41. user_group_df['sharerate_ad'] * float(ad_all_group_share_rate) / user_group_df['sharerate_all']
  42. user_group_df['group_ad_share_rate'].fillna(0, inplace=True)
  43. # 结果写入redis
  44. key_name = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{data_key}:{rule_key}:{dt}"
  45. redis_data = {}
  46. for index, item in user_group_df.iterrows():
  47. redis_data[item['group']] = item['group_ad_share_rate']
  48. group_ad_share_rate_mean = user_group_df['group_ad_share_rate'].mean()
  49. redis_data['mean_group'] = group_ad_share_rate_mean
  50. if len(redis_data) > 0:
  51. redis_helper = RedisHelper()
  52. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  53. return user_group_df
  54. def update_users_data(project, table, dt, update_params):
  55. """预估用户组有广告时分享率"""
  56. # 获取用户组特征
  57. user_group_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  58. data_params = update_params.get('data_params')
  59. rule_params = update_params.get('rule_params')
  60. for param in update_params.get('params_list'):
  61. log_.info(f"param = {param} update start...")
  62. predict_user_group_share_rate(user_group_initial_df=user_group_initial_df,
  63. dt=dt,
  64. data_params=data_params,
  65. rule_params=rule_params,
  66. param=param)
  67. log_.info(f"param = {param} update end!")
  68. # for data_key, data_param in update_params.items():
  69. # log_.info(f"data_key = {data_key} update start...")
  70. # predict_user_group_share_rate(user_group_initial_df=user_group_initial_df,
  71. # dt=dt,
  72. # data_key=data_key,
  73. # data_param=data_param)
  74. # log_.info(f"data_key = {data_key} update end!")
  75. def timer_check():
  76. try:
  77. update_params = config_.AD_USER_PARAMS
  78. project = config_.ad_model_data['users_share_rate'].get('project')
  79. table = config_.ad_model_data['users_share_rate'].get('table')
  80. now_date = datetime.datetime.today()
  81. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  82. log_.info(f"now_date: {dt}")
  83. now_min = datetime.datetime.now().minute
  84. # 查看当前更新的数据是否已准备好
  85. data_count = data_check(project=project, table=table, dt=dt)
  86. if data_count > 0:
  87. log_.info(f"ad user group data count = {data_count}")
  88. # 数据准备好,进行更新
  89. update_users_data(project=project, table=table, dt=dt, update_params=update_params)
  90. log_.info(f"ad user group data update end!")
  91. # elif now_min > 45:
  92. # log_.info('ad user group data is None!')
  93. # send_msg_to_feishu(
  94. # webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
  95. # key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
  96. # msg_text=f"rov-offline{config_.ENV_TEXT} - 用户组分享率数据未准备好!\n"
  97. # f"traceback: {traceback.format_exc()}"
  98. # )
  99. else:
  100. # 数据没准备好,1分钟后重新检查
  101. Timer(60, timer_check).start()
  102. except Exception as e:
  103. log_.error(f"用户组分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  104. send_msg_to_feishu(
  105. webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
  106. key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
  107. msg_text=f"rov-offline{config_.ENV_TEXT} - 用户组分享率预测数据更新失败\n"
  108. f"exception: {e}\n"
  109. f"traceback: {traceback.format_exc()}"
  110. )
  111. if __name__ == '__main__':
  112. timer_check()