123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- import datetime
- import traceback
- from threading import Timer
- from my_utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu
- from my_config import set_config
- from log import Log
- config_, _ = set_config()
- log_ = Log()
- redis_helper = RedisHelper()
- features = [
- 'apptype',
- 'group',
- 'sharerate_all',
- 'sharerate_ad'
- ]
- def predict_user_group_share_rate(user_group_initial_df, dt, data_params, rule_params, param):
- """预估用户组对应的有广告时分享率"""
- # 获取对应的参数
- data_key = param.get('data')
- data_param = data_params.get(data_key)
- rule_key = param.get('rule')
- rule_param = rule_params.get(rule_key)
- # 获取对应的用户组特征
- user_group_df = user_group_initial_df.copy()
- user_group_df['apptype'] = user_group_df['apptype'].astype(int)
- user_group_df = user_group_df[user_group_df['apptype'] == data_param]
- user_group_df['sharerate_all'].fillna(0, inplace=True)
- user_group_df['sharerate_ad'].fillna(0, inplace=True)
- user_group_df['sharerate_all'] = user_group_df['sharerate_all'].astype(float)
- user_group_df['sharerate_ad'] = user_group_df['sharerate_ad'].astype(float)
- # 获取有广告时所有用户组近30天的分享率
- ad_all_group_share_rate = user_group_df[user_group_df['group'] == 'allmids']['sharerate_ad'].values[0]
- # 获取对应的用户分组数据
- user_group_list = rule_param.get('group_list')
- user_group_df = user_group_df[user_group_df['group'].isin(user_group_list)]
- # 去除对应无广告用户组
- if rule_param.get('remove_no_ad_group') is True:
- user_group_df = user_group_df[~user_group_df['group'].isin(rule_param.get('no_ad_mid_group_list'))]
- # 计算用户组有广告时分享率
- user_group_df['group_ad_share_rate'] = \
- user_group_df['sharerate_ad'] * float(ad_all_group_share_rate) / user_group_df['sharerate_all']
- user_group_df['group_ad_share_rate'].fillna(0, inplace=True)
- # 结果写入redis
- key_name = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{data_key}:{rule_key}:{dt}"
- redis_data = {}
- for index, item in user_group_df.iterrows():
- redis_data[item['group']] = item['group_ad_share_rate']
- group_ad_share_rate_mean = user_group_df['group_ad_share_rate'].mean()
- redis_data['mean_group'] = group_ad_share_rate_mean
- if len(redis_data) > 0:
- redis_helper = RedisHelper()
- redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
- return user_group_df
- def update_users_data(project, table, dt, update_params):
- """预估用户组有广告时分享率"""
- # 获取用户组特征
- user_group_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
- data_params = update_params.get('data_params')
- rule_params = update_params.get('rule_params')
- for param in update_params.get('params_list'):
- log_.info(f"param = {param} update start...")
- predict_user_group_share_rate(user_group_initial_df=user_group_initial_df,
- dt=dt,
- data_params=data_params,
- rule_params=rule_params,
- param=param)
- log_.info(f"param = {param} update end!")
- # for data_key, data_param in update_params.items():
- # log_.info(f"data_key = {data_key} update start...")
- # predict_user_group_share_rate(user_group_initial_df=user_group_initial_df,
- # dt=dt,
- # data_key=data_key,
- # data_param=data_param)
- # log_.info(f"data_key = {data_key} update end!")
- def timer_check():
- try:
- update_params = config_.AD_USER_PARAMS
- project = config_.ad_model_data['users_share_rate'].get('project')
- table = config_.ad_model_data['users_share_rate'].get('table')
- now_date = datetime.datetime.today()
- dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- log_.info(f"now_date: {dt}")
- now_min = datetime.datetime.now().minute
- # 查看当前更新的数据是否已准备好
- data_count = data_check(project=project, table=table, dt=dt)
- if data_count > 0:
- log_.info(f"ad user group data count = {data_count}")
- # 数据准备好,进行更新
- update_users_data(project=project, table=table, dt=dt, update_params=update_params)
- log_.info(f"ad user group data update end!")
- # elif now_min > 45:
- # log_.info('ad user group data is None!')
- # send_msg_to_feishu(
- # webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
- # key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
- # msg_text=f"rov-offline{config_.ENV_TEXT} - 用户组分享率数据未准备好!\n"
- # f"traceback: {traceback.format_exc()}"
- # )
- else:
- # 数据没准备好,1分钟后重新检查
- Timer(60, timer_check).start()
- except Exception as e:
- log_.error(f"用户组分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
- send_msg_to_feishu(
- webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
- key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
- msg_text=f"rov-offline{config_.ENV_TEXT} - 用户组分享率预测数据更新失败\n"
- f"exception: {e}\n"
- f"traceback: {traceback.format_exc()}"
- )
- if __name__ == '__main__':
- timer_check()
|