ad_user_data_with_out_update.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. import datetime
  2. import traceback
  3. from threading import Timer
  4. from my_utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu
  5. from my_config import set_config
  6. from log import Log
  7. config_, _ = set_config()
  8. log_ = Log()
  9. redis_helper = RedisHelper()
  10. features = [
  11. 'apptype',
  12. 'group',
  13. 'adrate',
  14. 'outrate',
  15. 'adrate_out'
  16. ]
  17. def predict_user_group_out_rate(user_group_initial_df, dt, data_params, rule_params, param):
  18. """预估用户组对应的有广告时不直接跳出的概率"""
  19. # 获取对应的参数
  20. data_key = param.get('data')
  21. data_param = data_params.get(data_key)
  22. rule_key = param.get('rule')
  23. rule_param = rule_params.get(rule_key)
  24. # 获取对应的用户组特征
  25. user_group_df = user_group_initial_df.copy()
  26. user_group_df['apptype'] = user_group_df['apptype'].astype(int)
  27. user_group_df = user_group_df[user_group_df['apptype'] == data_param]
  28. user_group_df['adrate'].fillna(0, inplace=True)
  29. user_group_df['outrate'].fillna(0, inplace=True)
  30. user_group_df['adrate_out'].fillna(0, inplace=True)
  31. user_group_df['adrate'] = user_group_df['adrate'].astype(float)
  32. user_group_df['outrate'] = user_group_df['outrate'].astype(float)
  33. user_group_df['adrate_out'] = user_group_df['adrate_out'].astype(float)
  34. # 获取对应的用户分组数据
  35. user_group_list = rule_param.get('group_list')
  36. user_group_df = user_group_df[user_group_df['group'].isin(user_group_list)]
  37. # 去除对应无广告用户组
  38. if rule_param.get('remove_no_ad_group') is True:
  39. user_group_df = user_group_df[~user_group_df['group'].isin(rule_param.get('no_ad_mid_group_list'))]
  40. # 计算用户组有广告时直接跳出的概率
  41. user_group_df = user_group_df[user_group_df['adrate'] != 0]
  42. user_group_df['group_ad_out_rate'] = \
  43. user_group_df['adrate_out'] * user_group_df['outrate'] / user_group_df['adrate']
  44. user_group_df['group_ad_out_rate'].fillna(0, inplace=True)
  45. # 计算用户组有广告时不直接跳出的概率
  46. user_group_df['group_ad_no_out_rate'] = 1 - user_group_df['group_ad_out_rate']
  47. # log_.info(f"user_group_df:\n{user_group_df}")
  48. # 结果写入redis
  49. key_name = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{data_key}:{rule_key}:{dt}"
  50. redis_data = {}
  51. for index, item in user_group_df.iterrows():
  52. redis_data[item['group']] = item['group_ad_no_out_rate']
  53. group_ad_out_rate_mean = user_group_df['group_ad_no_out_rate'].mean()
  54. redis_data['mean_group'] = group_ad_out_rate_mean
  55. if len(redis_data) > 0:
  56. redis_helper = RedisHelper()
  57. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  58. return user_group_df
  59. def update_users_data(project, table, dt, update_params):
  60. """预估用户组有广告时直接跳出的概率"""
  61. # 获取用户组特征
  62. user_group_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  63. data_params = update_params.get('data_params')
  64. rule_params = update_params.get('rule_params')
  65. for param in update_params.get('params_list'):
  66. log_.info(f"param = {param} update start...")
  67. predict_user_group_out_rate(user_group_initial_df=user_group_initial_df,
  68. dt=dt,
  69. data_params=data_params,
  70. rule_params=rule_params,
  71. param=param)
  72. log_.info(f"param = {param} update end!")
  73. def timer_check():
  74. try:
  75. update_params = config_.AD_USER_WITH_OUT_PARAMS
  76. project = config_.ad_model_data['users_data_with_out'].get('project')
  77. table = config_.ad_model_data['users_data_with_out'].get('table')
  78. now_date = datetime.datetime.today()
  79. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  80. log_.info(f"now_date: {dt}")
  81. # 查看当前更新的数据是否已准备好
  82. data_count = data_check(project=project, table=table, dt=dt)
  83. if data_count > 0:
  84. log_.info(f"ad user group data count = {data_count}")
  85. # 数据准备好,进行更新
  86. update_users_data(project=project, table=table, dt=dt, update_params=update_params)
  87. log_.info(f"ad user group data update end!")
  88. else:
  89. # 数据没准备好,1分钟后重新检查
  90. Timer(60, timer_check).start()
  91. except Exception as e:
  92. log_.error(f"用户组直接跳出的概率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  93. send_msg_to_feishu(
  94. webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
  95. key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
  96. msg_text=f"rov-offline{config_.ENV_TEXT} - 用户组直接跳出的概率预测数据更新失败\n"
  97. f"exception: {e}\n"
  98. f"traceback: {traceback.format_exc()}"
  99. )
  100. if __name__ == '__main__':
  101. timer_check()