123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 |
- import datetime
- import pandas as pd
- import math
- from odps import ODPS
- from threading import Timer
- from get_data import get_data_from_odps
- from utils import filter_video_status
- from db_helper import RedisHelper
- from config import set_config
- from log import Log
- config_, _ = set_config()
- log_ = Log()
- project = 'loghubods'
- table = 'video_each_hour_update'
- features = [
- 'videoid',
- 'lastonehour_preview', # 过去1小时预曝光人数
- 'lastonehour_view', # 过去1小时曝光人数
- 'lastonehour_play', # 过去1小时播放人数
- 'lastonehour_share', # 过去1小时分享人数
- 'lastonehour_return', # 过去1小时分享,过去1小时回流人数
- 'lastonehour_preview_total_final', # 过去1小时预曝光次数
- 'lastonehour_view_total_final', # 过去1小时曝光次数
- 'lastonehour_play_total_final', # 过去1小时播放次数
- 'lastonehour_share_total_final', # 过去1小时分享次数
- 'lastonehour_show', # 过去1小时video_show人数
- 'lastonehour_show_total_final', # 过去1小时video_show次数
- 'platform_return',
- ]
- def h_data_check(project, table, now_date):
- """检查数据是否准备好"""
- odps = ODPS(
- access_id=config_.ODPS_CONFIG['ACCESSID'],
- secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
- project=project,
- endpoint=config_.ODPS_CONFIG['ENDPOINT'],
- connect_timeout=3000,
- read_timeout=500000,
- pool_maxsize=1000,
- pool_connections=1000
- )
- try:
- dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
- sql = f'select * from {project}.{table} where dt = {dt}'
- with odps.execute_sql(sql=sql).open_reader() as reader:
- data_count = reader.count
- except Exception as e:
- data_count = 0
- return data_count
- def get_rov_redis_key(now_date):
- # 获取rov模型结果存放key
- redis_helper = RedisHelper()
- now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
- if not redis_helper.key_exists(key_name=key_name):
- pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
- key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
- return key_name
- def get_feature_data(now_date):
- """获取特征数据"""
- dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
- # dt = '2022041310'
- records = get_data_from_odps(date=dt, project=project, table=table)
- feature_data = []
- for record in records:
- item = {}
- for feature_name in features:
- item[feature_name] = record[feature_name]
- feature_data.append(item)
- feature_df = pd.DataFrame(feature_data)
- return feature_df
- def cal_score(df, param):
- """
- 计算score
- :param df: 特征数据
- :param param: 规则参数
- :return:
- """
- # score计算公式: sharerate*backrate*logback*ctr
- # sharerate = lastonehour_share/(lastonehour_play+1000)
- # backrate = lastonehour_return/(lastonehour_share+10)
- # ctr = lastonehour_play/(lastonehour_view+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- if param.get('view_type', None) == 'pre-view':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- elif param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_view'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score2(df):
- # score2计算公式: score = lastonehour_return/(lastonehour_view+1000)
- df = df.fillna(0)
- df['score'] = df['lastonehour_return'] / (df['lastonehour_view'] + 1000)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def cal_score3(df):
- # score3计算公式:
- # score = lastonehour_share_total_final/(lastonehour_view+1000)
- # + 0.03 * lastonehour_return/(lastonehour_share_total_final+1)
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share_total_final'] / (df['lastonehour_view'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share_total_final'] + 1)
- df['score'] = df['share_rate'] + 0.03 * df['back_rate']
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def video_rank(df, now_date, now_h, rule_key, param):
- """
- 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
- :param df:
- :param now_date:
- :param now_h:
- :param rule_key: 小时级数据进入条件
- :param param: 小时级数据进入条件参数
- :return:
- """
- # 获取rov模型结果
- redis_helper = RedisHelper()
- key_name = get_rov_redis_key(now_date=now_date)
- initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
- log_.info(f'initial data count = {len(initial_data)}')
- # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
- return_count = param.get('return_count')
- score_value = param.get('score_rule')
- platform_return_rate = param.get('platform_return_rate', 0)
- h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
- & (df['platform_return_rate'] >= platform_return_rate)]
- h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
- h_recall_videos = h_recall_df['videoid'].to_list()
- log_.info(f'h_recall videos count = {len(h_recall_videos)}')
- # 视频状态过滤
- filtered_videos = filter_video_status(h_recall_videos)
- log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
- # 写入对应的redis
- h_video_ids = []
- h_recall_result = {}
- for video_id in filtered_videos:
- score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
- h_recall_result[int(video_id)] = float(score)
- h_video_ids.append(int(video_id))
- h_recall_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
- if len(h_recall_result) > 0:
- redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=23 * 3600)
- # 清空线上过滤应用列表
- redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
- dup_to_redis(h_video_ids, now_date, now_h, rule_key)
- # 去重更新rov模型结果,并另存为redis中
- # initial_data_dup = {}
- # for video_id, score in initial_data:
- # if int(video_id) not in h_video_ids:
- # initial_data_dup[int(video_id)] = score
- # log_.info(f"initial data dup count = {len(initial_data_dup)}")
- # initial_key_name = \
- # f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
- # if len(initial_data_dup) > 0:
- # redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
- def dup_to_redis(h_video_ids, now_date, now_h, rule_key):
- """将小时级数据与其他召回视频池去重,存入对应的redis"""
- redis_helper = RedisHelper()
- # ##### 去重小程序相对24h数据更新结果,并另存为redis中
- rule_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}rule2.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
- if redis_helper.key_exists(key_name=rule_24h_key_name):
- rule_24h_data = redis_helper.get_all_data_from_zset(key_name=rule_24h_key_name, with_scores=True)
- log_.info(f'rule_24h data count = {len(rule_24h_data)}')
- rule_24h_dup = {}
- for video_id, score in rule_24h_data:
- if int(video_id) not in h_video_ids:
- rule_24h_dup[int(video_id)] = score
- h_video_ids.append(int(video_id))
- log_.info(f"rule_24h data dup count = {len(rule_24h_dup)}")
- rule_24h_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP_24H_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
- if len(rule_24h_dup) > 0:
- redis_helper.add_data_with_zset(key_name=rule_24h_dup_key_name, data=rule_24h_dup, expire_time=23 * 3600)
- # ##### 去重小程序模型更新结果,并另存为redis中
- model_key_name = get_rov_redis_key(now_date=now_date)
- model_data = redis_helper.get_all_data_from_zset(key_name=model_key_name, with_scores=True)
- log_.info(f'model data count = {len(model_data)}')
- model_data_dup = {}
- for video_id, score in model_data:
- if int(video_id) not in h_video_ids:
- model_data_dup[int(video_id)] = score
- h_video_ids.append(int(video_id))
- log_.info(f"model data dup count = {len(model_data_dup)}")
- model_data_dup_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
- if len(model_data_dup) > 0:
- redis_helper.add_data_with_zset(key_name=model_data_dup_key_name, data=model_data_dup, expire_time=23 * 3600)
- def rank_by_h(now_date, now_h, rule_params):
- # 获取特征数据
- feature_df = get_feature_data(now_date=now_date)
- # rank
- for key, value in rule_params.items():
- log_.info(f"rule = {key}, param = {value}")
- # 计算score
- cal_score_func = value.get('cal_score_func', 0)
- if cal_score_func == 2:
- score_df = cal_score2(df=feature_df)
- elif cal_score_func == 3:
- score_df = cal_score3(df=feature_df)
- else:
- score_df = cal_score(df=feature_df, param=value)
- video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value)
- # to-csv
- score_filename = f"score_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
- score_df.to_csv(f'./data/{score_filename}')
- # to-logs
- log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
- "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_H,
- "rule_key": key,
- "score_df": score_df[['videoid', 'score']]})
- def h_rank_bottom(now_date, now_h, rule_key):
- """未按时更新数据,用上一小时结果作为当前小时的数据"""
- log_.info(f"rule_key = {rule_key}")
- # 获取rov模型结果
- redis_helper = RedisHelper()
- if now_h == 0:
- redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
- redis_h = 23
- else:
- redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- redis_h = now_h - 1
- key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_H]
- for key_prefix in key_prefix_list:
- key_name = f"{key_prefix}{rule_key}.{redis_dt}.{redis_h}"
- initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
- if initial_data is None:
- initial_data = []
- final_data = dict()
- h_video_ids = []
- for video_id, score in initial_data:
- final_data[video_id] = score
- h_video_ids.append(int(video_id))
- # 存入对应的redis
- final_key_name = \
- f"{key_prefix}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
- if len(final_data) > 0:
- redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
- # 清空线上过滤应用列表
- redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
- dup_to_redis(h_video_ids, now_date, now_h, rule_key)
- def h_timer_check():
- rule_params = config_.RULE_PARAMS
- # return_count_list = [20, 10]
- now_date = datetime.datetime.today()
- log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
- now_h = datetime.datetime.now().hour
- now_min = datetime.datetime.now().minute
- # if now_h == 0:
- # for key, _ in rule_params.items():
- # h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
- # return
- # 查看当前小时更新的数据是否已准备好
- h_data_count = h_data_check(project=project, table=table, now_date=now_date)
- if h_data_count > 0:
- log_.info(f'h_data_count = {h_data_count}')
- # 数据准备好,进行更新
- rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params)
- elif now_min > 50:
- log_.info('h_recall data is None, use bottom data!')
- for key, _ in rule_params.items():
- h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
- else:
- # 数据没准备好,1分钟后重新检查
- Timer(60, h_timer_check).start()
- if __name__ == '__main__':
- # df1 = get_feature_data()
- # res = cal_score(df=df1)
- # video_rank(df=res, now_date=datetime.datetime.today())
- # rank_by_h()
- h_timer_check()
|