rule_rank_h.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. import datetime
  2. import pandas as pd
  3. import math
  4. from odps import ODPS
  5. from threading import Timer
  6. from get_data import get_data_from_odps
  7. from utils import filter_video_status
  8. from db_helper import RedisHelper
  9. from config import set_config
  10. from log import Log
  11. config_, _ = set_config()
  12. log_ = Log()
  13. project = 'loghubods'
  14. table = 'video_each_hour_update'
  15. features = [
  16. 'videoid',
  17. 'lastonehour_preview', # 过去1小时预曝光人数
  18. 'lastonehour_view', # 过去1小时曝光人数
  19. 'lastonehour_play', # 过去1小时播放人数
  20. 'lastonehour_share', # 过去1小时分享人数
  21. 'lastonehour_return', # 过去1小时分享,过去1小时回流人数
  22. 'lastonehour_preview_total_final', # 过去1小时预曝光次数
  23. 'lastonehour_view_total_final', # 过去1小时曝光次数
  24. 'lastonehour_play_total_final', # 过去1小时播放次数
  25. 'lastonehour_share_total_final', # 过去1小时分享次数
  26. 'lastonehour_show', # 过去1小时video_show人数
  27. 'lastonehour_show_total_final', # 过去1小时video_show次数
  28. 'platform_return',
  29. ]
  30. def h_data_check(project, table, now_date):
  31. """检查数据是否准备好"""
  32. odps = ODPS(
  33. access_id=config_.ODPS_CONFIG['ACCESSID'],
  34. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  35. project=project,
  36. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  37. connect_timeout=3000,
  38. read_timeout=500000,
  39. pool_maxsize=1000,
  40. pool_connections=1000
  41. )
  42. try:
  43. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  44. sql = f'select * from {project}.{table} where dt = {dt}'
  45. with odps.execute_sql(sql=sql).open_reader() as reader:
  46. data_count = reader.count
  47. except Exception as e:
  48. data_count = 0
  49. return data_count
  50. def get_rov_redis_key(now_date):
  51. # 获取rov模型结果存放key
  52. redis_helper = RedisHelper()
  53. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  54. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  55. if not redis_helper.key_exists(key_name=key_name):
  56. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  57. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  58. return key_name
  59. def get_feature_data(now_date):
  60. """获取特征数据"""
  61. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  62. # dt = '2022041310'
  63. records = get_data_from_odps(date=dt, project=project, table=table)
  64. feature_data = []
  65. for record in records:
  66. item = {}
  67. for feature_name in features:
  68. item[feature_name] = record[feature_name]
  69. feature_data.append(item)
  70. feature_df = pd.DataFrame(feature_data)
  71. return feature_df
  72. def cal_score(df, param):
  73. """
  74. 计算score
  75. :param df: 特征数据
  76. :param param: 规则参数
  77. :return:
  78. """
  79. # score计算公式: sharerate*backrate*logback*ctr
  80. # sharerate = lastonehour_share/(lastonehour_play+1000)
  81. # backrate = lastonehour_return/(lastonehour_share+10)
  82. # ctr = lastonehour_play/(lastonehour_view+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  83. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  84. df = df.fillna(0)
  85. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  86. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  87. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  88. if param.get('view_type', None) == 'pre-view':
  89. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  90. elif param.get('view_type', None) == 'video-show':
  91. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  92. else:
  93. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_view'] + 1000)
  94. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  95. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  96. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  97. df = df.sort_values(by=['score'], ascending=False)
  98. return df
  99. def cal_score2(df):
  100. # score2计算公式: score = lastonehour_return/(lastonehour_view+1000)
  101. df = df.fillna(0)
  102. df['score'] = df['lastonehour_return'] / (df['lastonehour_view'] + 1000)
  103. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  104. df = df.sort_values(by=['score'], ascending=False)
  105. return df
  106. def cal_score3(df):
  107. # score3计算公式:
  108. # score = lastonehour_share_total_final/(lastonehour_view+1000)
  109. # + 0.03 * lastonehour_return/(lastonehour_share_total_final+1)
  110. df = df.fillna(0)
  111. df['share_rate'] = df['lastonehour_share_total_final'] / (df['lastonehour_view'] + 1000)
  112. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share_total_final'] + 1)
  113. df['score'] = df['share_rate'] + 0.03 * df['back_rate']
  114. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  115. df = df.sort_values(by=['score'], ascending=False)
  116. return df
  117. def video_rank(df, now_date, now_h, rule_key, param):
  118. """
  119. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  120. :param df:
  121. :param now_date:
  122. :param now_h:
  123. :param rule_key: 小时级数据进入条件
  124. :param param: 小时级数据进入条件参数
  125. :return:
  126. """
  127. # 获取rov模型结果
  128. redis_helper = RedisHelper()
  129. key_name = get_rov_redis_key(now_date=now_date)
  130. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  131. log_.info(f'initial data count = {len(initial_data)}')
  132. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  133. return_count = param.get('return_count')
  134. score_value = param.get('score_rule')
  135. platform_return_rate = param.get('platform_return_rate', 0)
  136. h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
  137. & (df['platform_return_rate'] >= platform_return_rate)]
  138. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  139. h_recall_videos = h_recall_df['videoid'].to_list()
  140. log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  141. # 视频状态过滤
  142. filtered_videos = filter_video_status(h_recall_videos)
  143. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  144. # 写入对应的redis
  145. h_video_ids = []
  146. h_recall_result = {}
  147. for video_id in filtered_videos:
  148. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  149. h_recall_result[int(video_id)] = float(score)
  150. h_video_ids.append(int(video_id))
  151. h_recall_key_name = \
  152. f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  153. if len(h_recall_result) > 0:
  154. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=23 * 3600)
  155. # 清空线上过滤应用列表
  156. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
  157. dup_to_redis(h_video_ids, now_date, now_h, rule_key)
  158. # 去重更新rov模型结果,并另存为redis中
  159. # initial_data_dup = {}
  160. # for video_id, score in initial_data:
  161. # if int(video_id) not in h_video_ids:
  162. # initial_data_dup[int(video_id)] = score
  163. # log_.info(f"initial data dup count = {len(initial_data_dup)}")
  164. # initial_key_name = \
  165. # f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  166. # if len(initial_data_dup) > 0:
  167. # redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
  168. def dup_to_redis(h_video_ids, now_date, now_h, rule_key):
  169. """将小时级数据与其他召回视频池去重,存入对应的redis"""
  170. redis_helper = RedisHelper()
  171. # ##### 去重小程序相对24h数据更新结果,并另存为redis中
  172. rule_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}rule2.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  173. if redis_helper.key_exists(key_name=rule_24h_key_name):
  174. rule_24h_data = redis_helper.get_all_data_from_zset(key_name=rule_24h_key_name, with_scores=True)
  175. log_.info(f'rule_24h data count = {len(rule_24h_data)}')
  176. rule_24h_dup = {}
  177. for video_id, score in rule_24h_data:
  178. if int(video_id) not in h_video_ids:
  179. rule_24h_dup[int(video_id)] = score
  180. h_video_ids.append(int(video_id))
  181. log_.info(f"rule_24h data dup count = {len(rule_24h_dup)}")
  182. rule_24h_dup_key_name = \
  183. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_24H_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  184. if len(rule_24h_dup) > 0:
  185. redis_helper.add_data_with_zset(key_name=rule_24h_dup_key_name, data=rule_24h_dup, expire_time=23 * 3600)
  186. # ##### 去重小程序模型更新结果,并另存为redis中
  187. model_key_name = get_rov_redis_key(now_date=now_date)
  188. model_data = redis_helper.get_all_data_from_zset(key_name=model_key_name, with_scores=True)
  189. log_.info(f'model data count = {len(model_data)}')
  190. model_data_dup = {}
  191. for video_id, score in model_data:
  192. if int(video_id) not in h_video_ids:
  193. model_data_dup[int(video_id)] = score
  194. h_video_ids.append(int(video_id))
  195. log_.info(f"model data dup count = {len(model_data_dup)}")
  196. model_data_dup_key_name = \
  197. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  198. if len(model_data_dup) > 0:
  199. redis_helper.add_data_with_zset(key_name=model_data_dup_key_name, data=model_data_dup, expire_time=23 * 3600)
  200. def rank_by_h(now_date, now_h, rule_params):
  201. # 获取特征数据
  202. feature_df = get_feature_data(now_date=now_date)
  203. # rank
  204. for key, value in rule_params.items():
  205. log_.info(f"rule = {key}, param = {value}")
  206. # 计算score
  207. cal_score_func = value.get('cal_score_func', 0)
  208. if cal_score_func == 2:
  209. score_df = cal_score2(df=feature_df)
  210. elif cal_score_func == 3:
  211. score_df = cal_score3(df=feature_df)
  212. else:
  213. score_df = cal_score(df=feature_df, param=value)
  214. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value)
  215. # to-csv
  216. score_filename = f"score_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  217. score_df.to_csv(f'./data/{score_filename}')
  218. # to-logs
  219. log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
  220. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_H,
  221. "rule_key": key,
  222. "score_df": score_df[['videoid', 'score']]})
  223. def h_rank_bottom(now_date, now_h, rule_key):
  224. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  225. log_.info(f"rule_key = {rule_key}")
  226. # 获取rov模型结果
  227. redis_helper = RedisHelper()
  228. if now_h == 0:
  229. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  230. redis_h = 23
  231. else:
  232. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  233. redis_h = now_h - 1
  234. key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_H]
  235. for key_prefix in key_prefix_list:
  236. key_name = f"{key_prefix}{rule_key}.{redis_dt}.{redis_h}"
  237. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  238. if initial_data is None:
  239. initial_data = []
  240. final_data = dict()
  241. h_video_ids = []
  242. for video_id, score in initial_data:
  243. final_data[video_id] = score
  244. h_video_ids.append(int(video_id))
  245. # 存入对应的redis
  246. final_key_name = \
  247. f"{key_prefix}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  248. if len(final_data) > 0:
  249. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  250. # 清空线上过滤应用列表
  251. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
  252. dup_to_redis(h_video_ids, now_date, now_h, rule_key)
  253. def h_timer_check():
  254. rule_params = config_.RULE_PARAMS
  255. # return_count_list = [20, 10]
  256. now_date = datetime.datetime.today()
  257. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  258. now_h = datetime.datetime.now().hour
  259. now_min = datetime.datetime.now().minute
  260. # if now_h == 0:
  261. # for key, _ in rule_params.items():
  262. # h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  263. # return
  264. # 查看当前小时更新的数据是否已准备好
  265. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  266. if h_data_count > 0:
  267. log_.info(f'h_data_count = {h_data_count}')
  268. # 数据准备好,进行更新
  269. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params)
  270. elif now_min > 50:
  271. log_.info('h_recall data is None, use bottom data!')
  272. for key, _ in rule_params.items():
  273. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  274. else:
  275. # 数据没准备好,1分钟后重新检查
  276. Timer(60, h_timer_check).start()
  277. if __name__ == '__main__':
  278. # df1 = get_feature_data()
  279. # res = cal_score(df=df1)
  280. # video_rank(df=res, now_date=datetime.datetime.today())
  281. # rank_by_h()
  282. h_timer_check()