123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- import pandas as pd
- import datetime
- import time
- from sklearn.model_selection import train_test_split
- from xgboost.sklearn import XGBClassifier
- from sklearn import metrics
- def xgboost_train():
- now_date = datetime.datetime.today()
- dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- # 1. 读取数据
- # data = pd.read_csv(f'./data/train_test_data/train_test_{dt}.csv')
- # print(data.shape)
- train_data = pd.read_csv(f'./data/train_test_data/train_{dt}.csv')
- print(train_data.shape)
- test_data = pd.read_csv(f'./data/train_test_data/test_{dt}.csv')
- print(test_data.shape)
- # 2. 划分x和y
- # data_columns = data.columns.values.tolist()
- # x = data[data_columns[:-1]]
- # y = data[data_columns[-1]]
- # print(f"x_shape: {x.shape}, y_shape: {y.shape}")
- data_columns = train_data.columns.values.tolist()
- x_train = train_data[data_columns[:-1]]
- y_train = train_data[data_columns[-1]]
- x_test = test_data[data_columns[:-1]]
- y_test = test_data[data_columns[-1]]
- # 3. 训练集和测试集分割
- # x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=1)
- print(f"x_train_shape: {x_train.shape}")
- print(f"x_test_shape: {x_test.shape}")
- # 4. 模型训练
- xgb_model = XGBClassifier(
- objective='binary:logistic',
- learning_rate=0.05,
- max_depth=9,
- min_child_weight=8,
- n_estimators=450,
- eval_metric=['error', 'auc']
- )
- xgb_model.fit(x_train, y_train, eval_set=[(x_train, y_train), (x_test, y_test)])
- # 5. 模型保存
- xgb_model.save_model('./data/ad_xgb.model')
- # 6. 测试集预测
- y_test_pre = xgb_model.predict(x_test)
- # test_df = x_test.copy()
- # test_df['y'] = y_test
- # test_df['y_pre'] = y_test_pre
- # test_df.to_csv('./data/test_pre.csv', index=False)
- # 7. 模型效果验证
- test_accuracy = metrics.accuracy_score(y_test, y_test_pre)
- print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))
- test_auc = metrics.roc_auc_score(y_test, y_test_pre)
- print("auc: %.2f%%" % (test_auc * 100.0))
- test_recall = metrics.recall_score(y_test, y_test_pre)
- print("recall:%.2f%%"%(test_recall*100.0))
- test_f1 = metrics.f1_score(y_test, y_test_pre)
- print("f1:%.2f%%"%(test_f1*100.0))
- test_precision = metrics.precision_score(y_test, y_test_pre)
- print("precision:%.2f%%"%(test_precision*100.0))
- if __name__ == '__main__':
- st_time = time.time()
- xgboost_train()
- print(f"{time.time() - st_time}s")
|