123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- import datetime
- import pandas as pd
- from odps import ODPS
- from utils import get_data_from_odps, RedisHelper, check_table_partition_exits
- from config import set_config
- from log import Log
- config_, _ = set_config()
- log_ = Log()
- def h_data_check(project, table, now_date):
- """检查数据是否准备好"""
- odps = ODPS(
- access_id=config_.ODPS_CONFIG['ACCESSID'],
- secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
- project=project,
- endpoint=config_.ODPS_CONFIG['ENDPOINT'],
- connect_timeout=3000,
- read_timeout=500000,
- pool_maxsize=1000,
- pool_connections=1000
- )
- try:
- dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- check_res = check_table_partition_exits(date=dt, project=project, table=table)
- if check_res:
- sql = f'select * from {project}.{table} where dt = {dt}'
- with odps.execute_sql(sql=sql).open_reader() as reader:
- data_count = reader.count
- else:
- data_count = 0
- except Exception as e:
- data_count = 0
- return data_count
- def get_feature_data(project, table, features, now_date):
- """获取特征数据"""
- dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- records = get_data_from_odps(date=dt, project=project, table=table)
- feature_data = []
- for record in records:
- item = {}
- for feature_name in features:
- item[feature_name] = record[feature_name]
- feature_data.append(item)
- feature_df = pd.DataFrame(feature_data)
- return feature_df
- def predict_user_group_share_rate(now_date):
- """预估用户组对应的有广告时分享率"""
- # 获取用户组特征
- project = config_.ad_model_data['users_share_rate'].get('project')
- table = config_.ad_model_data['users_share_rate'].get('table')
- features = [
- 'apptype',
- 'group',
- 'sharerate_all',
- 'sharerate_ad'
- ]
- user_group_df = get_feature_data(project=project, table=table, features=features, now_date=now_date)
- user_group_df['sharerate_all'] = user_group_df['sharerate_all'].astype(float)
- user_group_df['sharerate_ad'] = user_group_df['sharerate_ad'].astype(float)
- # 获取有广告时所有用户组近30天的分享率
- ad_all_group_share_rate = user_group_df[user_group_df['group'] == 'allmids']['sharerate_ad']
- user_group_df = user_group_df[user_group_df['group'] != 'allmids']
- # 计算用户组有广告时分享率
- user_group_df['group_ad_share_rate'] = \
- user_group_df['sharerate_ad'] * float(ad_all_group_share_rate) / user_group_df['sharerate_all']
- # 结果写入redis
- # key_name = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{datetime.datetime.strftime(now_date, '%Y%m%d')}"
- # redis_data = {}
- # for item in user_group_df:
- # redis_data[item['group']] = item['group_ad_share_rate']
- # if len(redis_data) > 0:
- # redis_helper = RedisHelper()
- # redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
- return user_group_df
- def predict_video_share_rate(now_date):
- """预估视频有广告时分享率"""
- # 获取视频特征
- project = config_.ad_model_data['videos_share_rate'].get('project')
- table = config_.ad_model_data['videos_share_rate'].get('table')
- features = [
- 'apptype',
- 'videoid',
- 'sharerate_all',
- 'sharerate_ad'
- ]
- video_df = get_feature_data(project=project, table=table, features=features, now_date=now_date)
- video_df['sharerate_all'] = video_df['sharerate_all'].astype(float)
- video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float)
- # 获取有广告时所有视频近30天的分享率
- ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad']
- video_df = video_df[video_df['videoid'] != 'allvideos']
- # 计算视频有广告时分享率
- video_df['video_ad_share_rate'] = \
- video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all']
- # 结果写入redis
- # key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{datetime.datetime.strftime(now_date, '%Y%m%d')}"
- # redis_data = {}
- # for item in video_df:
- # redis_data[item['videoid']] = item['video_ad_share_rate']
- # if len(redis_data) > 0:
- # redis_helper = RedisHelper()
- # redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
- return video_df
- def predict_ad_group_video(now_date):
- user_group_df = predict_user_group_share_rate(now_date)
- video_df = predict_video_share_rate(now_date)
- predict_df = video_df
- for item in user_group_df:
- predict_df[item['group']] = predict_df['videoid'] * item['group_ad_share_rate']
- return predict_df
- if __name__ == '__main__':
- now_date = datetime.datetime.today()
- predict_df = predict_ad_group_video(now_date)
|