123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- import time
- import datetime
- import pandas as pd
- import math
- import random
- from odps import ODPS
- from threading import Timer
- from get_data import get_data_from_odps
- from db_helper import RedisHelper, MysqlHelper
- from config import set_config
- from log import Log
- from utils import filter_video_status_with_applet_rec
- config_, env = set_config()
- log_ = Log()
- features = [
- '视频id',
- '抓取时间',
- '进入黑名单时间',
- '站外播放量'
- ]
- def h_data_check(project, table, now_date):
- """检查数据是否准备好"""
- odps = ODPS(
- access_id=config_.ODPS_CONFIG['ACCESSID'],
- secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
- project=project,
- endpoint=config_.ODPS_CONFIG['ENDPOINT'],
- connect_timeout=3000,
- read_timeout=500000,
- pool_maxsize=1000,
- pool_connections=1000
- )
- try:
- dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- sql = f'select * from {project}.{table} where dt = {dt}'
- with odps.execute_sql(sql=sql).open_reader() as reader:
- data_count = reader.count
- except Exception as e:
- data_count = 0
- return data_count
- def get_feature_data(now_date, project, table):
- """获取特征数据"""
- dt = datetime.datetime.strftime(now_date, '%Y%m%d')
- # dt = '2022041310'
- records = get_data_from_odps(date=dt, project=project, table=table)
- feature_data = []
- for record in records:
- item = {}
- for feature_name in features:
- item[feature_name] = record[feature_name]
- feature_data.append(item)
- feature_df = pd.DataFrame(feature_data)
- return feature_df
- def video_rank(app_type, df, now_date, now_h, return_count):
- """
- 对视频进行排序
- :param app_type:
- :param df:
- :param now_date:
- :param now_h:
- :param return_count: 小时级数据回流限制数
- :return:
- """
- # 视频状态过滤
- log_.info(f'initial_df count = {len(df)}')
- video_ids = [int(video_id) for video_id in df['videoid']]
- df['videoid'] = df['videoid'].astype(int)
- # 获取待推荐
- filtered_result_6 = filter_video_status_with_applet_rec(video_ids=video_ids, applet_rec_status=-6)
- filtered_df_6 = df[df['videoid'].isin(filtered_result_6)]
- filtered_df_6 = filtered_df_6.drop_duplicates(['videoid'], keep=False)
- log_.info(f'filtered_df_6 count = {len(filtered_df_6)}')
- # 获取普通推荐
- filtered_result_1 = filter_video_status_with_applet_rec(video_ids=video_ids, applet_rec_status=1)
- filtered_df_1 = df[df['videoid'].isin(filtered_result_1)]
- filtered_df_1 = filtered_df_1.drop_duplicates(['videoid'], keep=False)
- log_.info(f'filtered_df_1 count = {len(filtered_df_1)}')
- log_.info(f'df length = {len(df)}')
- # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
- h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= 0.005)]
- h_recall_videos = h_recall_df['videoid'].to_list()
- log_.info(f'h_recall videos count = {len(h_recall_videos)}')
- # 不符合进入召回源条件的视频
- df = df.append(h_recall_df)
- h_else_df = df.drop_duplicates(['videoid'], keep=False)
- h_else_df = h_else_df.sort_values(by=['score'], ascending=False)
- h_else_videos = h_else_df['videoid'].to_list()
- # 合并,给定分数
- final_videos = h_recall_videos + h_else_videos
- final_result = {}
- step = round(100/len(final_videos), 3)
- for i, video_id in enumerate(final_videos):
- score = 100 - i * step
- final_result[int(video_id)] = score
- # 写入对应的redis
- key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_APP_TYPE}{app_type}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
- if len(final_result) > 0:
- redis_helper = RedisHelper()
- redis_helper.add_data_with_zset(key_name=key_name, data=final_result, expire_time=23 * 3600)
- def rank_by_h(app_type, now_date, now_h, return_count_list, project, table):
- # 获取特征数据
- feature_df = get_feature_data(now_date=now_date, project=project, table=table)
- # 计算score
- score_df = cal_score(df=feature_df)
- # rank
- for cnt in return_count_list:
- log_.info(f"return_count = {cnt}")
- video_rank(app_type=app_type, df=score_df, now_date=now_date, now_h=now_h, return_count=cnt)
- # to-csv
- score_filename = f"score_{app_type}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
- score_df.to_csv(f'./data/{score_filename}')
|