rule_rank_h.py 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. import datetime
  2. import pandas as pd
  3. import math
  4. from odps import ODPS
  5. from threading import Timer
  6. from get_data import get_data_from_odps
  7. from db_helper import RedisHelper
  8. from config import set_config
  9. from log import Log
  10. config_, _ = set_config()
  11. log_ = Log()
  12. project = 'loghubods'
  13. table = 'video_each_hour_update'
  14. features = [
  15. 'videoid',
  16. 'lastonehour_preview', # 过去1小时预曝光人数
  17. 'lastonehour_view', # 过去1小时曝光
  18. 'lastonehour_play', # 过去1小时播放
  19. 'lastonehour_share', # 过去1小时分享
  20. 'lastonehour_return', # 过去1小时分享,过去1小时回流
  21. ]
  22. def h_data_check(project, table, now_date):
  23. """检查数据是否准备好"""
  24. odps = ODPS(
  25. access_id=config_.ODPS_CONFIG['ACCESSID'],
  26. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  27. project=project,
  28. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  29. connect_timeout=3000,
  30. read_timeout=500000,
  31. pool_maxsize=1000,
  32. pool_connections=1000
  33. )
  34. try:
  35. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  36. sql = f'select * from {project}.{table} where dt = {dt}'
  37. with odps.execute_sql(sql=sql).open_reader() as reader:
  38. data_count = reader.count
  39. except Exception as e:
  40. data_count = 0
  41. return data_count
  42. def get_rov_redis_key(now_date):
  43. # 获取rov模型结果存放key
  44. redis_helper = RedisHelper()
  45. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  46. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  47. if not redis_helper.key_exists(key_name=key_name):
  48. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  49. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  50. return key_name
  51. def get_feature_data(now_date):
  52. """获取特征数据"""
  53. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  54. # dt = '2022041310'
  55. records = get_data_from_odps(date=dt, project=project, table=table)
  56. feature_data = []
  57. for record in records:
  58. item = {}
  59. for feature_name in features:
  60. item[feature_name] = record[feature_name]
  61. feature_data.append(item)
  62. feature_df = pd.DataFrame(feature_data)
  63. return feature_df
  64. def cal_score(df, param):
  65. """
  66. 计算score
  67. :param df: 特征数据
  68. :param param: 规则参数
  69. :return:
  70. """
  71. # score计算公式: sharerate*backrate*logback*ctr
  72. # sharerate = lastonehour_share/(lastonehour_play+1000)
  73. # backrate = lastonehour_return/(lastonehour_share+10)
  74. # ctr = lastonehour_play/(lastonehour_view+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  75. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  76. df = df.fillna(0)
  77. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  78. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  79. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  80. if param.get('view_type', None) == 'pre-view':
  81. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  82. else:
  83. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_view'] + 1000)
  84. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  85. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  86. df = df.sort_values(by=['score'], ascending=False)
  87. return df
  88. def cal_score2(df):
  89. # score2计算公式: score = lastonehour_return/(lastonehour_view+1000)
  90. df = df.fillna(0)
  91. df['score'] = df['lastonehour_return'] / (df['lastonehour_view'] + 1000)
  92. df = df.sort_values(by=['score'], ascending=False)
  93. return df
  94. def video_rank(df, now_date, now_h, rule_key, param):
  95. """
  96. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  97. :param df:
  98. :param now_date:
  99. :param now_h:
  100. :param rule_key: 小时级数据进入条件
  101. :param param: 小时级数据进入条件参数
  102. :return:
  103. """
  104. # 获取rov模型结果
  105. redis_helper = RedisHelper()
  106. key_name = get_rov_redis_key(now_date=now_date)
  107. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  108. log_.info(f'initial data count = {len(initial_data)}')
  109. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  110. return_count = param.get('return_count')
  111. score_value = param.get('score_rule')
  112. h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)]
  113. h_recall_videos = h_recall_df['videoid'].to_list()
  114. log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  115. # 写入对应的redis
  116. h_video_ids =[]
  117. h_recall_result = {}
  118. for video_id in h_recall_videos:
  119. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  120. h_recall_result[int(video_id)] = float(score)
  121. h_video_ids.append(int(video_id))
  122. h_recall_key_name = \
  123. f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  124. if len(h_recall_result) > 0:
  125. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=23 * 3600)
  126. # 清空线上过滤应用列表
  127. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
  128. # 去重更新rov模型结果,并另存为redis中
  129. initial_data_dup = {}
  130. for video_id, score in initial_data:
  131. if int(video_id) not in h_video_ids:
  132. initial_data_dup[int(video_id)] = score
  133. log_.info(f"initial data dup count = {len(initial_data_dup)}")
  134. initial_key_name = \
  135. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  136. if len(initial_data_dup) > 0:
  137. redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
  138. # # 去重合并
  139. # final_videos = [int(item) for item in h_recall_videos]
  140. # temp_videos = [int(video_id) for video_id, _ in initial_data if int(video_id) not in final_videos]
  141. # final_videos = final_videos + temp_videos
  142. # log_.info(f'final videos count = {len(final_videos)}')
  143. #
  144. # # 重新给定score
  145. # final_data = {}
  146. # for i, video_id in enumerate(final_videos):
  147. # score = 100 - i * config_.ROV_SCORE_D
  148. # final_data[video_id] = score
  149. #
  150. # # 存入对应的redis
  151. # final_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  152. # redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=24 * 3600)
  153. def rank_by_h(now_date, now_h, rule_params):
  154. # 获取特征数据
  155. feature_df = get_feature_data(now_date=now_date)
  156. # rank
  157. for key, value in rule_params.items():
  158. log_.info(f"rule = {key}, param = {value}")
  159. # 计算score
  160. cal_score_func = value.get('cal_score_func', 0)
  161. if cal_score_func == 2:
  162. score_df = cal_score2(df=feature_df)
  163. else:
  164. score_df = cal_score(df=feature_df, param=value)
  165. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value)
  166. # to-csv
  167. score_filename = f"score_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  168. score_df.to_csv(f'./data/{score_filename}')
  169. def h_rank_bottom(now_date, now_h, rule_key):
  170. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  171. log_.info(f"rule_key = {rule_key}")
  172. # 获取rov模型结果
  173. redis_helper = RedisHelper()
  174. if now_h == 0:
  175. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  176. redis_h = 23
  177. else:
  178. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  179. redis_h = now_h - 1
  180. key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_H, config_.RECALL_KEY_NAME_PREFIX_DUP_H]
  181. for key_prefix in key_prefix_list:
  182. key_name = f"{key_prefix}{rule_key}.{redis_dt}.{redis_h}"
  183. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  184. final_data = dict()
  185. for video_id, score in initial_data:
  186. final_data[video_id] = score
  187. # 存入对应的redis
  188. final_key_name = \
  189. f"{key_prefix}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  190. if len(final_data) > 0:
  191. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  192. # 清空线上过滤应用列表
  193. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
  194. def h_timer_check():
  195. rule_params = config_.RULE_PARAMS
  196. # return_count_list = [20, 10]
  197. now_date = datetime.datetime.today()
  198. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  199. now_h = datetime.datetime.now().hour
  200. now_min = datetime.datetime.now().minute
  201. if now_h == 0:
  202. for key, _ in rule_params.items():
  203. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  204. return
  205. # 查看当前小时更新的数据是否已准备好
  206. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  207. if h_data_count > 0:
  208. log_.info(f'h_data_count = {h_data_count}')
  209. # 数据准备好,进行更新
  210. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params)
  211. elif now_min > 50:
  212. log_.info('h_recall data is None, use bottom data!')
  213. for key, _ in rule_params.items():
  214. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  215. else:
  216. # 数据没准备好,1分钟后重新检查
  217. Timer(60, h_timer_check).start()
  218. if __name__ == '__main__':
  219. # df1 = get_feature_data()
  220. # res = cal_score(df=df1)
  221. # video_rank(df=res, now_date=datetime.datetime.today())
  222. # rank_by_h()
  223. h_timer_check()