alg_growth_gh_reply_video_v1.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. # -*- coding: utf-8 -*-
  2. import pandas as pd
  3. import traceback
  4. import odps
  5. from odps import ODPS
  6. from threading import Timer
  7. from datetime import datetime, timedelta
  8. from db_helper import MysqlHelper
  9. from my_utils import check_table_partition_exits_v2, get_dataframe_from_odps, \
  10. get_odps_df_of_max_partition, get_odps_instance, get_odps_df_of_recent_partitions
  11. from my_utils import request_post, send_msg_to_feishu
  12. from my_config import set_config
  13. import numpy as np
  14. from log import Log
  15. import os
  16. from argparse import ArgumentParser
  17. from constants import AutoReplyAccountType
  18. CONFIG, _ = set_config()
  19. LOGGER = Log()
  20. BASE_GROUP_NAME = 'stg0909-base'
  21. EXPLORE1_GROUP_NAME = 'stg0909-explore1'
  22. EXPLORE2_GROUP_NAME = 'stg0909-explore2'
  23. GH_IDS = ('gh_ac43e43b253b', 'gh_93e00e187787', 'gh_77f36c109fb1',
  24. 'gh_68e7fdc09fe4', 'gh_b181786a6c8c')
  25. CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center"
  26. ODS_PROJECT = "loghubods"
  27. EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history'
  28. GH_REPLY_STATS_TABLE = 'alg_growth_gh_reply_video_stats'
  29. ODPS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  30. RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  31. GH_DETAIL = 'gh_detail'
  32. STATS_PERIOD_DAYS = 5
  33. SEND_N = 2
  34. pd.set_option('display.max_rows', None)
  35. def get_and_update_gh_ids(run_dt):
  36. gh = get_odps_df_of_max_partition(ODS_PROJECT, GH_DETAIL, {'dt': run_dt})
  37. gh = gh.to_pandas()
  38. gh = gh[gh['type'] == AutoReplyAccountType.SELF_OWNED_GZH.value]
  39. # default单独处理
  40. if 'default' not in gh['gh_id'].values:
  41. new_row = pd.DataFrame({'gh_id': ['default'], 'gh_name': ['默认'], 'type': [2], 'category1': ['泛生活']},
  42. index=[0])
  43. gh = pd.concat([gh, new_row], ignore_index=True)
  44. gh = gh.drop_duplicates(subset=['gh_id'])
  45. global GH_IDS
  46. GH_IDS = tuple(gh['gh_id'])
  47. return gh
  48. def check_data_partition(project, table, data_dt, data_hr=None):
  49. """检查数据是否准备好"""
  50. try:
  51. partition_spec = {'dt': data_dt}
  52. if data_hr:
  53. partition_spec['hour'] = data_hr
  54. part_exist, data_count = check_table_partition_exits_v2(
  55. project, table, partition_spec)
  56. except Exception as e:
  57. data_count = 0
  58. return data_count
  59. def get_last_strategy_result(project, rank_table, dt_version, key):
  60. strategy_df = get_odps_df_of_max_partition(
  61. project, rank_table, { 'ctime': dt_version }
  62. ).to_pandas()
  63. sub_df = strategy_df.query(f'strategy_key == "{key}"')
  64. sub_df = sub_df[['gh_id', 'video_id', 'strategy_key', 'sort']].drop_duplicates()
  65. return sub_df
  66. def process_reply_stats(project, table, period, run_dt):
  67. # 获取多天即转统计数据用于聚合
  68. df = get_odps_df_of_recent_partitions(project, table, period, {'dt': run_dt})
  69. df = df.to_pandas()
  70. df['video_id'] = df['video_id'].astype('int64')
  71. df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
  72. # 账号内聚合
  73. df = df.groupby(['video_id', 'gh_id']).agg({
  74. 'send_count': 'sum',
  75. 'first_visit_uv': 'sum',
  76. 'day0_return': 'sum'
  77. }).reset_index()
  78. # 聚合所有数据作为default
  79. default_stats_df = df.groupby('video_id').agg({
  80. 'send_count': 'sum',
  81. 'first_visit_uv': 'sum',
  82. 'day0_return': 'sum'
  83. }).reset_index()
  84. default_stats_df['gh_id'] = 'default'
  85. merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True)
  86. merged_df['score'] = merged_df['day0_return'] / (merged_df['send_count'] + 500)
  87. return merged_df
  88. def rank_for_layer1(run_dt, run_hour, project, table, gh_df):
  89. # TODO: 加审核&退场
  90. df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
  91. df = df.to_pandas()
  92. # 确保重跑时可获得一致结果
  93. dt_version = f'{run_dt}{run_hour}'
  94. np.random.seed(int(dt_version) + 1)
  95. # TODO: 修改权重计算策略
  96. df['score'] = df['ros']
  97. # 按照 category1 分类后进行加权随机抽样
  98. sampled_df = df.groupby('category1').apply(
  99. lambda x: x.sample(n=SEND_N, weights=x['score'], replace=False)).reset_index(drop=True)
  100. sampled_df['sort'] = sampled_df.groupby('category1')['score'].rank(method='first', ascending=False).astype(int)
  101. sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME
  102. sampled_df['dt_version'] = dt_version
  103. extend_df = sampled_df.merge(gh_df, on='category1')
  104. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  105. return result_df
  106. def rank_for_layer2(run_dt, run_hour, project, stats_table, rank_table):
  107. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  108. # 确保重跑时可获得一致结果
  109. dt_version = f'{run_dt}{run_hour}'
  110. np.random.seed(int(dt_version)+1)
  111. # TODO: 计算账号间相关性
  112. ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量
  113. ## 求向量相关系数或cosine相似度
  114. ## 单个视频的RoVn加权求和
  115. # 当前实现基础版本:只在账号内求二级探索排序分
  116. sampled_dfs = []
  117. # 处理default逻辑(default-explore2)
  118. default_stats_df = stats_df.query('gh_id == "default"')
  119. sampled_df = default_stats_df.sample(n=SEND_N, weights=default_stats_df['score'])
  120. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  121. sampled_dfs.append(sampled_df)
  122. # 基础过滤for账号
  123. df = stats_df.query('day0_return > 100')
  124. # fallback to base if necessary
  125. base_strategy_df = get_last_strategy_result(
  126. project, rank_table, dt_version, BASE_GROUP_NAME)
  127. for gh_id in GH_IDS:
  128. if gh_id == 'default':
  129. continue
  130. sub_df = df.query(f'gh_id == "{gh_id}"')
  131. if len(sub_df) < SEND_N:
  132. LOGGER.warning(
  133. "gh_id[{}] rows[{}] not enough for layer2, fallback to base"
  134. .format(gh_id, len(sub_df)))
  135. sub_df = base_strategy_df.query(f'gh_id == "{gh_id}"')
  136. sub_df['score'] = sub_df['sort']
  137. sampled_df = sub_df.sample(n=SEND_N, weights=sub_df['score'])
  138. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  139. sampled_dfs.append(sampled_df)
  140. extend_df = pd.concat(sampled_dfs)
  141. extend_df['strategy_key'] = EXPLORE2_GROUP_NAME
  142. extend_df['dt_version'] = dt_version
  143. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  144. return result_df
  145. def rank_for_base(run_dt, run_hour, project, stats_table, rank_table):
  146. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  147. #TODO: support to set base manually
  148. dt_version = f'{run_dt}{run_hour}'
  149. # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间
  150. base_strategy_df = get_last_strategy_result(
  151. project, rank_table, dt_version, BASE_GROUP_NAME)
  152. default_stats_df = stats_df.query('gh_id == "default"')
  153. # 在账号内排序,决定该账号(包括default)的base利用内容
  154. # 排序过程中,确保当前base策略参与排序,因此先关联再过滤
  155. gh_ids_str = ','.join(f'"{x}"' for x in GH_IDS)
  156. stats_df = stats_df.query(f'gh_id in ({gh_ids_str})')
  157. stats_with_strategy_df = stats_df \
  158. .merge(
  159. base_strategy_df,
  160. on=['gh_id', 'video_id'],
  161. how='left') \
  162. .query('strategy_key.notna() or score > 0.1')
  163. # 合并default和分账号数据
  164. grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index()
  165. def set_top_n(group, n=2):
  166. group_sorted = group.sort_values(by='score', ascending=False)
  167. top_n = group_sorted.head(n)
  168. top_n['sort'] = range(1, n + 1)
  169. return top_n
  170. ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N)
  171. ranked_df = ranked_df.reset_index(drop=True)
  172. #ranked_df['sort'] = grouped_stats_df.groupby('gh_id')['score'].rank(ascending=False)
  173. ranked_df['strategy_key'] = BASE_GROUP_NAME
  174. ranked_df['dt_version'] = dt_version
  175. ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  176. return ranked_df
  177. def check_result_data(df):
  178. for gh_id in GH_IDS:
  179. for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME):
  180. sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"')
  181. if len(sub_df) != SEND_N:
  182. raise Exception(f"Result not enough for gh_id[{gh_id}] group[{key}]")
  183. def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
  184. dt_version = f'{run_dt}{run_hour}'
  185. dry_run = kwargs.get('dry_run', False)
  186. next_dt = (datetime.strptime(run_dt, "%Y%m%d") + timedelta(1)).strftime("%Y%m%d")
  187. gh_df = get_and_update_gh_ids(next_dt)
  188. layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE, gh_df)
  189. layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT,
  190. GH_REPLY_STATS_TABLE, ODPS_RANK_RESULT_TABLE)
  191. base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT,
  192. GH_REPLY_STATS_TABLE, ODPS_RANK_RESULT_TABLE)
  193. final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True)
  194. check_result_data(final_rank_df)
  195. odps_instance = get_odps_instance(project)
  196. odps_ranked_df = odps.DataFrame(final_rank_df)
  197. video_df = get_dataframe_from_odps('videoods', 'wx_video')
  198. video_df['cover_url'] = video_df['cover_img_path'] + CDN_IMG_OPERATOR
  199. video_df = video_df['id', 'title', 'cover_url']
  200. final_df = odps_ranked_df.join(video_df, on=('video_id', 'id'))
  201. final_df = final_df.to_pandas()
  202. final_df = final_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'title', 'cover_url', 'score']]
  203. # reverse sending order
  204. final_df['sort'] = SEND_N + 1 - final_df['sort']
  205. if dry_run:
  206. print(final_df[['strategy_key', 'gh_id', 'sort', 'video_id', 'score', 'title']])
  207. return
  208. # save to ODPS
  209. t = odps_instance.get_table(ODPS_RANK_RESULT_TABLE)
  210. part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
  211. part_spec =','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
  212. with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
  213. writer.write(list(final_df.itertuples(index=False)))
  214. # sync to MySQL
  215. data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)]
  216. data_columns = list(final_df.columns)
  217. mysql = MysqlHelper(CONFIG.MYSQL_CRAWLER_INFO)
  218. mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns)
  219. def main_loop():
  220. argparser = ArgumentParser()
  221. argparser.add_argument('-n', '--dry-run', action='store_true')
  222. args = argparser.parse_args()
  223. try:
  224. now_date = datetime.today()
  225. LOGGER.info(f"开始执行: {datetime.strftime(now_date, '%Y-%m-%d %H:%M')}")
  226. now_hour = now_date.strftime("%H")
  227. last_date = now_date - timedelta(1)
  228. last_dt = last_date.strftime("%Y%m%d")
  229. # 查看当前天级更新的数据是否已准备好
  230. # 当前上游统计表为天级更新,但字段设计为兼容小时级
  231. h_data_count = check_data_partition(ODS_PROJECT, GH_REPLY_STATS_TABLE, last_dt, '00')
  232. if h_data_count > 0:
  233. LOGGER.info('上游数据表查询数据条数={},开始计算'.format(h_data_count))
  234. run_dt = now_date.strftime("%Y%m%d")
  235. LOGGER.info(f'run_dt: {run_dt}, run_hour: {now_hour}')
  236. build_and_transfer_data(run_dt, now_hour, ODS_PROJECT,
  237. dry_run=args.dry_run)
  238. LOGGER.info('数据更新完成')
  239. else:
  240. LOGGER.info("上游数据未就绪,等待60s")
  241. Timer(60, main_loop).start()
  242. return
  243. except Exception as e:
  244. LOGGER.error(f"数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  245. if CONFIG.ENV_TEXT == '开发环境':
  246. return
  247. send_msg_to_feishu(
  248. webhook=CONFIG.FEISHU_ROBOT['server_robot'].get('webhook'),
  249. key_word=CONFIG.FEISHU_ROBOT['server_robot'].get('key_word'),
  250. msg_text=f"rov-offline{CONFIG.ENV_TEXT} - 数据更新失败\n"
  251. f"exception: {e}\n"
  252. f"traceback: {traceback.format_exc()}"
  253. )
  254. if __name__ == '__main__':
  255. LOGGER.info("%s 开始执行" % os.path.basename(__file__))
  256. LOGGER.info(f"environment: {CONFIG.ENV_TEXT}")
  257. main_loop()