alg_growth_gh_reply_video_v1.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253
  1. # -*- coding: utf-8 -*-
  2. import pandas as pd
  3. import traceback
  4. import odps
  5. from odps import ODPS
  6. from threading import Timer
  7. from datetime import datetime, timedelta
  8. from db_helper import MysqlHelper
  9. from my_utils import check_table_partition_exits_v2, get_dataframe_from_odps, \
  10. get_odps_df_of_max_partition, get_odps_instance, get_odps_df_of_recent_partitions
  11. from my_utils import request_post, send_msg_to_feishu
  12. from my_config import set_config
  13. import numpy as np
  14. from log import Log
  15. import os
  16. CONFIG, _ = set_config()
  17. LOGGER = Log()
  18. BASE_GROUP_NAME = 'stg0909-base'
  19. EXPLORE1_GROUP_NAME = 'stg0909-explore1'
  20. EXPLORE2_GROUP_NAME = 'stg0909-explore2'
  21. #TODO: fetch gh_id from external data source
  22. GH_IDS = ('gh_ac43e43b253b', 'gh_93e00e187787', 'gh_77f36c109fb1', 'gh_68e7fdc09fe4')
  23. CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center"
  24. ODS_PROJECT = "loghubods"
  25. EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history'
  26. GH_REPLY_STATS_TABLE = 'alg_growth_gh_reply_video_stats'
  27. ODPS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  28. RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  29. STATS_PERIOD_DAYS = 3
  30. def check_data_partition(project, table, data_dt, data_hr=None):
  31. """检查数据是否准备好"""
  32. try:
  33. partition_spec = {'dt': data_dt}
  34. if data_hr:
  35. partition_spec['hour'] = data_hr
  36. part_exist, data_count = check_table_partition_exits_v2(
  37. project, table, partition_spec)
  38. except Exception as e:
  39. data_count = 0
  40. return data_count
  41. def process_reply_stats(project, table, period, run_dt):
  42. # 获取多天即转统计数据用于聚合
  43. df = get_odps_df_of_recent_partitions(project, table, period, {'dt': run_dt})
  44. df = df.to_pandas()
  45. df['video_id'] = df['video_id'].astype('int64')
  46. df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
  47. # 账号内聚合
  48. df = df.groupby(['video_id', 'gh_id']).agg({
  49. 'send_count': 'sum',
  50. 'first_visit_uv': 'sum',
  51. 'day0_return': 'sum'
  52. }).reset_index()
  53. # 聚合所有数据作为default
  54. default_stats_df = df.groupby('video_id').agg({
  55. 'send_count': 'sum',
  56. 'first_visit_uv': 'sum',
  57. 'day0_return': 'sum'
  58. }).reset_index()
  59. default_stats_df['gh_id'] = 'default'
  60. merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True)
  61. merged_df['score'] = merged_df['day0_return'] / (merged_df['first_visit_uv'] + 1000)
  62. return merged_df
  63. def rank_for_layer1(run_dt, run_hour, project, table):
  64. # TODO: 加审核&退场
  65. df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
  66. df = df.to_pandas()
  67. # 确保重跑时可获得一致结果
  68. dt_version = f'{run_dt}{run_hour}'
  69. np.random.seed(int(dt_version)+1)
  70. # TODO: 修改权重计算策略
  71. sample_weights = df['rov']
  72. sampled_df = df.sample(n=2, weights=sample_weights)
  73. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  74. sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME
  75. sampled_df['dt_version'] = dt_version
  76. gh_name_df = pd.DataFrame({'gh_id': GH_IDS + ('default', )})
  77. sampled_df['_tmpkey'] = 1
  78. gh_name_df['_tmpkey'] = 1
  79. extend_df = sampled_df.merge(gh_name_df, on='_tmpkey').drop('_tmpkey', axis=1)
  80. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id']]
  81. return result_df
  82. def rank_for_layer2(run_dt, run_hour, project, table):
  83. stats_df = process_reply_stats(project, table, STATS_PERIOD_DAYS, run_dt)
  84. # 确保重跑时可获得一致结果
  85. dt_version = f'{run_dt}{run_hour}'
  86. np.random.seed(int(dt_version)+1)
  87. # TODO: 计算账号间相关性
  88. ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量
  89. ## 求向量相关系数或cosine相似度
  90. ## 单个视频的RoVn加权求和
  91. # 当前实现基础版本:只在账号内求二级探索排序分
  92. sampled_dfs = []
  93. # 处理default逻辑(default-explore2)
  94. default_stats_df = stats_df.query('gh_id == "default"')
  95. sampled_df = default_stats_df.sample(n=2, weights=default_stats_df['score'])
  96. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  97. sampled_dfs.append(sampled_df)
  98. # 基础过滤for账号
  99. df = stats_df.query('day0_return > 100')
  100. # TODO: fetch send_count
  101. # TODO: 个数不足时的兜底逻辑
  102. for gh_id in GH_IDS:
  103. sub_df = df.query(f'gh_id == "{gh_id}"')
  104. sampled_df = sub_df.sample(n=2, weights=sub_df['score'])
  105. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  106. sampled_dfs.append(sampled_df)
  107. if len(sampled_df) != 2:
  108. raise
  109. extend_df = pd.concat(sampled_dfs)
  110. extend_df['strategy_key'] = EXPLORE2_GROUP_NAME
  111. extend_df['dt_version'] = dt_version
  112. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id']]
  113. return result_df
  114. def rank_for_base(run_dt, run_hour, project, stats_table, rank_table):
  115. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  116. #TODO: support to set base manually
  117. dt_version = f'{run_dt}{run_hour}'
  118. # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间
  119. strategy_df = get_odps_df_of_max_partition(
  120. project, rank_table, { 'ctime': dt_version }
  121. ).to_pandas()
  122. base_strategy_df = strategy_df.query('strategy_key.str.contains("base")')
  123. base_strategy_df = base_strategy_df[['gh_id', 'video_id', 'strategy_key']].drop_duplicates()
  124. default_stats_df = stats_df.query('gh_id == "default"')
  125. # 在账号内排序,决定该账号(包括default)的base利用内容
  126. # 排序过程中,确保当前base策略参与排序,因此先关联再过滤
  127. gh_ids_str = ','.join(f'"{x}"' for x in GH_IDS)
  128. stats_df = stats_df.query(f'gh_id in ({gh_ids_str})')
  129. stats_with_strategy_df = stats_df \
  130. .merge(
  131. base_strategy_df,
  132. on=['gh_id', 'video_id'],
  133. how='left') \
  134. .query('strategy_key.notna() or day0_return > 100')
  135. # 合并default和分账号数据
  136. grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index()
  137. def set_top_n(group, n=2):
  138. group_sorted = group.sort_values(by='score', ascending=False)
  139. top_n = group_sorted.head(n)
  140. top_n['sort'] = range(1, n + 1)
  141. return top_n
  142. ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n)
  143. ranked_df = ranked_df.reset_index(drop=True)
  144. #ranked_df['sort'] = grouped_stats_df.groupby('gh_id')['score'].rank(ascending=False)
  145. ranked_df['strategy_key'] = BASE_GROUP_NAME
  146. ranked_df['dt_version'] = dt_version
  147. ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id']]
  148. return ranked_df
  149. def build_and_transfer_data(run_dt, run_hour, project):
  150. dt_version = f'{run_dt}{run_hour}'
  151. layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE)
  152. layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE)
  153. base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT,
  154. GH_REPLY_STATS_TABLE, ODPS_RANK_RESULT_TABLE)
  155. final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True)
  156. odps_instance = get_odps_instance(project)
  157. odps_ranked_df = odps.DataFrame(final_rank_df)
  158. video_df = get_dataframe_from_odps('videoods', 'wx_video')
  159. video_df['cover_url'] = video_df['cover_img_path'] + CDN_IMG_OPERATOR
  160. video_df = video_df['id', 'title', 'cover_url']
  161. final_df = odps_ranked_df.join(video_df, on=('video_id', 'id'))
  162. final_df = final_df.to_pandas()
  163. final_df = final_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'title', 'cover_url']]
  164. # save to ODPS
  165. t = odps_instance.get_table(ODPS_RANK_RESULT_TABLE)
  166. part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
  167. part_spec =','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
  168. with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
  169. writer.write(list(final_df.itertuples(index=False)))
  170. # sync to MySQL
  171. data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)]
  172. data_columns = list(final_df.columns)
  173. mysql = MysqlHelper(CONFIG.MYSQL_CRAWLER_INFO)
  174. mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns)
  175. def main_loop():
  176. try:
  177. now_date = datetime.today()
  178. LOGGER.info(f"开始执行: {datetime.strftime(now_date, '%Y-%m-%d %H:%M')}")
  179. now_hour = now_date.strftime("%H")
  180. last_date = now_date - timedelta(1)
  181. last_dt = last_date.strftime("%Y%m%d")
  182. # 查看当前天级更新的数据是否已准备好
  183. # 当前上游统计表为天级更新,但字段设计为兼容小时级
  184. h_data_count = check_data_partition(ODS_PROJECT, GH_REPLY_STATS_TABLE, last_dt, '00')
  185. if h_data_count > 0:
  186. LOGGER.info('上游数据表查询数据条数={},开始计算'.format(h_data_count))
  187. run_dt = now_date.strftime("%Y%m%d")
  188. LOGGER.info(f'run_dt: {run_dt}, run_hour: {now_hour}')
  189. build_and_transfer_data(run_dt, now_hour, ODS_PROJECT)
  190. LOGGER.info('数据更新完成')
  191. else:
  192. LOGGER.info("上游数据未就绪,等待60s")
  193. Timer(60, main_loop).start()
  194. return
  195. except Exception as e:
  196. LOGGER.error(f"数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  197. if CONFIG.ENV_TEXT == '开发环境':
  198. return
  199. send_msg_to_feishu(
  200. webhook=CONFIG.FEISHU_ROBOT['server_robot'].get('webhook'),
  201. key_word=CONFIG.FEISHU_ROBOT['server_robot'].get('key_word'),
  202. msg_text=f"rov-offline{CONFIG.ENV_TEXT} - 数据更新失败\n"
  203. f"exception: {e}\n"
  204. f"traceback: {traceback.format_exc()}"
  205. )
  206. if __name__ == '__main__':
  207. LOGGER.info("%s 开始执行" % os.path.basename(__file__))
  208. LOGGER.info(f"environment: {CONFIG.ENV_TEXT}")
  209. main_loop()