123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- # 对训练数据的分布进行监控
- import numpy as np
- import pandas as pd
- import datetime
- from my_config import set_config
- from rov_train import process_data, process_predict_data
- from my_utils import send_msg_to_feishu
- config_, env = set_config()
- def get_feature_distribution(feature_name, feature_data):
- statistical_results = {'feature_name': feature_name}
- feature_data = np.array(feature_data)
- feature_data_sorted = sorted(feature_data)
- length = len(feature_data_sorted)
- count_0 = len([item for item in feature_data_sorted if item == 0])
- print('data_count = {}, count_0 = {}, rate_0 = {}'.format(length, count_0, count_0/length))
- statistical_results['data_count'] = length
- statistical_results['0_count'] = count_0
- statistical_results['0_rate'] = count_0/length
- # 整体数据分布
- for percentile in [0.25, 0.5, 0.75, 1]:
- data_count = int(length * percentile)
- data = feature_data_sorted[:data_count + 1]
- data_mean = np.mean(data)
- data_var = np.var(data)
- data_std = np.std(data)
- # print('percentile = {}, data_count = {}, mean = {}, var = {}, std = {}'.format(
- # percentile, data_count, data_mean, data_var, data_std))
- statistical_results['mean_{}'.format(percentile)] = data_mean
- statistical_results['var_{}'.format(percentile)] = data_var
- statistical_results['std_{}'.format(percentile)] = data_std
- # 非零数据分布
- data_non_zero = [item for item in feature_data_sorted if item != 0]
- for percentile in [0.25, 0.5, 0.75, 1]:
- data_count = int(len(data_non_zero) * percentile)
- data = data_non_zero[:data_count + 1]
- data_mean = np.mean(data)
- data_var = np.var(data)
- data_std = np.std(data)
- # print('percentile = {}, data_count = {}, mean = {}, var = {}, std = {}'.format(
- # percentile, data_count, data_mean, data_var, dat_std))
- statistical_results['non_zero_mean_{}'.format(percentile)] = data_mean
- statistical_results['non_zero_var_{}'.format(percentile)] = data_var
- statistical_results['non_zero_std_{}'.format(percentile)] = data_std
- return statistical_results
- def all_feature_distribution(data, file):
- res = []
- columns = [
- 'feature_name', 'data_count', '0_count', '0_rate',
- 'mean_0.25', 'mean_0.5', 'mean_0.75', 'mean_1',
- 'var_0.25', 'var_0.5', 'var_0.75', 'var_1',
- 'std_0.25', 'std_0.5', 'std_0.75', 'std_1',
- 'non_zero_mean_0.25', 'non_zero_mean_0.5', 'non_zero_mean_0.75', 'non_zero_mean_1',
- 'non_zero_var_0.25', 'non_zero_var_0.5', 'non_zero_var_0.75', 'non_zero_var_1',
- 'non_zero_std_0.25', 'non_zero_std_0.5', 'non_zero_std_0.75', 'non_zero_std_1'
- ]
- feature_importance = pd.read_csv('data/model_feature_importance.csv')
- feature_name_list = list(feature_importance['feature'])
- for feature_name in feature_name_list:
- print(feature_name)
- feature_data = data[feature_name]
- statistical_results = get_feature_distribution(feature_name=feature_name, feature_data=feature_data)
- res.append(statistical_results)
- df = pd.DataFrame(res, columns=columns)
- df.to_csv(file)
- def cal_diff(base_data_file, compare_data_file, feature_top=-1):
- """
- 计算数据偏移量,并对超过指定指标的特征进行飞书报警
- :param base_data_file: 对比的基准数据文件路径
- :param compare_data_file: 需对比的数据文件路径
- :param feature_top: 根据特征重要性排序获取的特征top,默认:-1,所有特征
- :return: 偏移量超过指定指标的特征以及对应的偏移量
- """
- df_init_base = pd.read_csv(base_data_file, index_col='feature_name')
- df_init_compare = pd.read_csv(compare_data_file, index_col='feature_name')
- # 计算特征数据偏移量
- feature_top_compare = df_init_compare.index.values[:feature_top]
- # 需观测的指标
- monitor_list = [
- '0_rate',
- 'mean_1', 'var_1',
- 'non_zero_mean_0.25', 'non_zero_mean_0.5', 'non_zero_mean_0.75', 'non_zero_mean_1',
- 'non_zero_var_0.25', 'non_zero_var_0.5', 'non_zero_var_0.75', 'non_zero_var_1'
- ]
- df_base = df_init_base.loc[feature_top_compare, monitor_list]
- df_compare = df_init_compare.loc[feature_top_compare, monitor_list]
- df_diff = abs(df_compare - df_base) / abs(df_base)
- # 获取偏移超过 10% 的特征及对应的偏移量
- offset_feature_list = []
- for column in df_diff.columns.to_list():
- df_temp = df_diff.loc[df_diff[column] >= 0.1]
- if not df_temp.empty:
- offset_feature_list.append(df_temp)
- if len(offset_feature_list) == 0:
- return None
- df_offset = pd.concat(offset_feature_list)
- # 去重
- df_offset.drop_duplicates(inplace=True)
- return df_offset
- def main():
- now_date = datetime.datetime.strftime(datetime.datetime.today(), '%Y%m%d')
- # now_date = '20220119'
- # 训练数据
- print('train data monitor...')
- train_data_file = 'data/train_data_monitor_{}.csv'.format(now_date)
- train_filename = config_.TRAIN_DATA_FILENAME
- train_x, train_y, videos, fea = process_data(filename=train_filename)
- all_feature_distribution(train_x, file=train_data_file)
- # 预测数据
- print('predict data monitor...')
- predict_data_file = 'data/predict_data_monitor_{}.csv'.format(now_date)
- predict_filename = config_.PREDICT_DATA_FILENAME
- predict_x, video_ids = process_predict_data(filename=predict_filename)
- all_feature_distribution(predict_x, file=predict_data_file)
- # 数据偏移监控
- print('calculate offset...')
- webhook = config_.FEISHU_ROBOT['feature_monitor_robot'].get('webhook')
- key_word = config_.FEISHU_ROBOT['feature_monitor_robot'].get('key_word')
- # 训练数据特征与前一天对比
- yesterday_date = datetime.datetime.strftime(
- datetime.datetime.today() - datetime.timedelta(days=1),
- '%Y%m%d'
- )
- train_data_yesterday_file = 'data/train_data_monitor_{}.csv'.format(yesterday_date)
- df_offset_train = cal_diff(base_data_file=train_data_yesterday_file,
- compare_data_file=train_data_file)
- if df_offset_train is not None:
- msg_text = '\ndate: {} \ntag: train_offset \n{}'.format(now_date, df_offset_train)
- send_msg_to_feishu(webhook=webhook, key_word=key_word, msg_text=msg_text)
- # 预测数据特征与前一天对比
- predict_data_yesterday_file = 'data/predict_data_monitor_{}.csv'.format(yesterday_date)
- df_offset_predict = cal_diff(base_data_file=predict_data_yesterday_file,
- compare_data_file=predict_data_file)
- if df_offset_predict is not None:
- msg_text = '\ndate: {} \ntag: predict_offset \n{}'.format(now_date, df_offset_predict)
- send_msg_to_feishu(webhook=webhook, key_word=key_word, msg_text=msg_text)
- # 当天预测数据特征与训练数据特征对比
- df_offset_predict_train = cal_diff(base_data_file=train_data_file, compare_data_file=predict_data_file)
- if df_offset_predict_train is not None:
- msg_text = '\ndate: {} \ntag: predict_train_offset \n{}'.format(now_date, df_offset_predict_train)
- send_msg_to_feishu(webhook=webhook, key_word=key_word, msg_text=msg_text)
- if __name__ == '__main__':
- main()
|