rov_data_check.py 2.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. import datetime
  2. import os
  3. from odps import ODPS
  4. from datetime import datetime as dt
  5. from threading import Timer
  6. from config import set_config
  7. config_ = set_config()
  8. def rov_train_recall_pool_update():
  9. # 训练数据和预测数据都准备好时,更新模型,预测
  10. os.system('sh /data/rov-offline/rov_train_recall_pool_update.sh')
  11. # 将日志上传到oss
  12. log_cmd = "ossutil cp -r {} oss://{}/{}".format("/data/rov-offline/logs", config_.BUCKET_NAME, config_.OSS_FOLDER)
  13. os.system(log_cmd)
  14. # 将data上传到oss
  15. data_cmd = "ossutil cp -r {} oss://{}/{}".format("/data/rov-offline/data", config_.BUCKET_NAME, config_.OSS_FOLDER)
  16. os.system(data_cmd)
  17. def data_check(project, table, date):
  18. odps = ODPS(
  19. access_id='LTAI4FtW5ZzxMvdw35aNkmcp',
  20. secret_access_key='0VKnydcaHK3ITjylbgUsLubX6rwiwc',
  21. project=project,
  22. endpoint='http://service.cn.maxcompute.aliyun.com/api',
  23. connect_timeout=3000,
  24. read_timeout=500000,
  25. pool_maxsize=1000,
  26. pool_connections=1000
  27. )
  28. try:
  29. sql = "select * from {}.{} where dt = {}".format(project, table, date)
  30. with odps.execute_sql(sql=sql).open_reader() as reader:
  31. feature_count = reader.count
  32. except Exception as e:
  33. feature_count = 0
  34. return feature_count
  35. def timer_check():
  36. # 当前日期
  37. now_date = datetime.datetime.today()
  38. # 训练数据 最近日期分区
  39. train_dt = now_date - datetime.timedelta(days=config_.TRAIN_DIFF)
  40. train_date = dt.strftime(train_dt, '%Y%m%d')
  41. # 预测数据 最近日期分区
  42. predict_dt = now_date - datetime.timedelta(days=config_.PREDICT_DIFF)
  43. predict_date = dt.strftime(predict_dt, '%Y%m%d')
  44. # 查看训练数据特征是否准备好
  45. train_feature_count = data_check(config_.TRAIN_PROJECT, config_.TRAIN_TABLE, train_date)
  46. # 查看训练数据特征是否准备好
  47. predict_feature_count = data_check(config_.PREDICT_PROJECT, config_.PREDICT_TABLE, predict_date)
  48. # 数据未准备好,1分钟后重新检查
  49. if train_feature_count == 0 or predict_feature_count == 0:
  50. # 数据未准备好,1分钟后重新检查
  51. Timer(60, timer_check).start()
  52. else:
  53. # 数据准备好,更新模型,预测
  54. rov_train_recall_pool_update()
  55. if __name__ == '__main__':
  56. timer_check()