ad_video_data_update.py 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
  1. import datetime
  2. import traceback
  3. import multiprocessing
  4. from threading import Timer
  5. from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
  6. from config import set_config
  7. from log import Log
  8. config_, _ = set_config()
  9. log_ = Log()
  10. redis_helper = RedisHelper()
  11. features = [
  12. 'apptype',
  13. 'videoid',
  14. 'sharerate_all',
  15. 'sharerate_ad'
  16. ]
  17. def get_top10_abnormal_videos_return(dt, filter_param):
  18. """获取昨日各端top10中的异常视频(裂变视频)"""
  19. abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
  20. abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
  21. abnormal_video_features = [
  22. 'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
  23. ]
  24. data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
  25. top10_abnormal_videos = {}
  26. if data_count > 0:
  27. abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
  28. features=abnormal_video_features, dt=dt)
  29. abnormal_video_df['multiple'].fillna(0, inplace=True)
  30. abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
  31. abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
  32. abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
  33. abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
  34. abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
  35. app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
  36. for app_type in app_type_list:
  37. app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
  38. app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
  39. # print(app_type_df)
  40. temp_video_id_list = []
  41. for index, item in app_type_df.iterrows():
  42. # print(item['rank'], item['videoid'], item['multiple'])
  43. if item['multiple'] > filter_param:
  44. # print(item['videoid'], item['multiple'])
  45. abnormal_video_id_list = temp_video_id_list.copy()
  46. abnormal_video_id_list.append(int(item['videoid']))
  47. top10_abnormal_videos[app_type] = abnormal_video_id_list
  48. temp_video_id_list.append(int(item['videoid']))
  49. else:
  50. temp_video_id_list.append(int(item['videoid']))
  51. # print(top10_abnormal_videos)
  52. log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
  53. return top10_abnormal_videos
  54. def predict_video_share_rate(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
  55. """预估视频有广告时分享率"""
  56. # 获取对应的视频特征
  57. video_df = video_initial_df.copy()
  58. video_df['apptype'] = video_df['apptype'].astype(int)
  59. video_df = video_df[video_df['apptype'] == int(data_param)]
  60. log_.info(f"video_df length: {len(video_df)}")
  61. video_df['sharerate_all'].fillna(0, inplace=True)
  62. video_df['sharerate_ad'].fillna(0, inplace=True)
  63. video_df['sharerate_all'] = video_df['sharerate_all'].astype(float)
  64. video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float)
  65. # 获取有广告时所有视频近30天的分享率
  66. ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad'].values[0]
  67. video_df = video_df[video_df['videoid'] != 'allvideos']
  68. # 剔除异常视频数据
  69. video_df['videoid'] = video_df['videoid'].astype(int)
  70. top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
  71. # print(int(data_param), len(video_df), top10_abnormal_video_ids)
  72. if top10_abnormal_video_ids is not None:
  73. video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
  74. # print(len(video_df))
  75. # 计算视频有广告时分享率
  76. video_df['video_ad_share_rate'] = \
  77. video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all']
  78. video_df['video_ad_share_rate'].fillna(0, inplace=True)
  79. # log_.info(f"video_df: {video_df}")
  80. video_df = video_df[video_df['video_ad_share_rate'] != 0]
  81. log_.info(f"video_df filtered 0 length: {len(video_df)}")
  82. # 结果写入redis
  83. key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}"
  84. redis_data = {}
  85. for index, item in video_df.iterrows():
  86. redis_data[int(item['videoid'])] = item['video_ad_share_rate']
  87. group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
  88. redis_data[-1] = group_ad_share_rate_mean
  89. # 异常视频给定值:mean/3
  90. if top10_abnormal_video_ids is not None:
  91. abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1)
  92. print(data_key, data_param, abnormal_video_param)
  93. for abnormal_video_id in top10_abnormal_video_ids:
  94. print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param)
  95. redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param
  96. log_.info(f"redis_data count: {len(redis_data)}")
  97. if len(redis_data) > 0:
  98. redis_helper = RedisHelper()
  99. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  100. return video_df
  101. def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
  102. """预估视频有广告时分享率"""
  103. # 获取视频特征
  104. video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  105. for data_key, data_param in update_params.items():
  106. log_.info(f"data_key = {data_key} update start...")
  107. predict_video_share_rate(video_initial_df=video_initial_df, dt=dt, data_key=data_key, data_param=data_param,
  108. top10_abnormal_videos=top10_abnormal_videos)
  109. log_.info(f"data_key = {data_key} update end!")
  110. def timer_check(dt, video_key, video_params, top10_abnormal_videos):
  111. log_.info(f"video_key = {video_key}")
  112. project = config_.ad_model_data[video_key].get('project')
  113. table = config_.ad_model_data[video_key].get('table')
  114. # 查看当前更新的数据是否已准备好
  115. data_count = data_check(project=project, table=table, dt=dt)
  116. if data_count > 0:
  117. log_.info(f"ad video data count = {data_count}")
  118. # 数据准备好,进行更新
  119. update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
  120. top10_abnormal_videos=top10_abnormal_videos)
  121. log_.info(f"video_key = {video_key} ad video data update end!")
  122. msg_list = [
  123. f"env: rov-offline {config_.ENV_TEXT}",
  124. f"video_key: {video_key}",
  125. f"now_date: {dt}",
  126. f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
  127. ]
  128. send_msg_to_feishu_new(
  129. webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
  130. key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
  131. title='广告模型视频分享率预测数据更新完成',
  132. msg_list=msg_list
  133. )
  134. else:
  135. # 数据没准备好,1分钟后重新检查
  136. Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
  137. def main():
  138. try:
  139. now_date = datetime.datetime.today()
  140. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  141. log_.info(f"now_date: {dt}")
  142. # 获取昨天top10中的异常视频(裂变视频)
  143. top10_abnormal_videos = get_top10_abnormal_videos_return(
  144. dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
  145. )
  146. update_params = config_.AD_VIDEO_DATA_PARAMS
  147. pool = multiprocessing.Pool(processes=len(update_params))
  148. for video_key, video_params in update_params.items():
  149. pool.apply_async(
  150. func=timer_check,
  151. args=(dt, video_key, video_params, top10_abnormal_videos)
  152. )
  153. pool.close()
  154. pool.join()
  155. # for video_key, video_params in update_params.items():
  156. # timer_check(dt, video_key, video_params, top10_abnormal_videos)
  157. except Exception as e:
  158. log_.error(f"视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  159. msg_list = [
  160. f"env: rov-offline {config_.ENV_TEXT}",
  161. f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
  162. f"exception: {e}",
  163. f"traceback: {traceback.format_exc()}",
  164. ]
  165. send_msg_to_feishu_new(
  166. webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
  167. key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
  168. title='广告模型视频分享率预测数据更新失败',
  169. msg_list=msg_list
  170. )
  171. if __name__ == '__main__':
  172. # timer_check()
  173. main()