ad_video_data_update.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. import datetime
  2. import traceback
  3. import multiprocessing
  4. from threading import Timer
  5. from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
  6. from config import set_config
  7. from log import Log
  8. config_, _ = set_config()
  9. log_ = Log()
  10. redis_helper = RedisHelper()
  11. features = [
  12. 'apptype',
  13. 'videoid',
  14. 'sharerate_all',
  15. 'sharerate_ad'
  16. ]
  17. def get_top10_abnormal_videos_return(dt, filter_param):
  18. """获取昨日各端top10中的异常视频(裂变视频)"""
  19. abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
  20. abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
  21. abnormal_video_features = [
  22. 'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
  23. ]
  24. data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
  25. top10_abnormal_videos = {}
  26. if data_count > 0:
  27. abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
  28. features=abnormal_video_features, dt=dt)
  29. abnormal_video_df['multiple'].fillna(0, inplace=True)
  30. abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
  31. abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
  32. abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
  33. abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
  34. abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
  35. app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
  36. for app_type in app_type_list:
  37. app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
  38. app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
  39. # print(app_type_df)
  40. temp_video_id_list = []
  41. for index, item in app_type_df.iterrows():
  42. # print(item['rank'], item['videoid'], item['multiple'])
  43. if item['multiple'] > filter_param:
  44. # print(item['videoid'], item['multiple'])
  45. abnormal_video_id_list = temp_video_id_list.copy()
  46. abnormal_video_id_list.append(int(item['videoid']))
  47. top10_abnormal_videos[app_type] = abnormal_video_id_list
  48. temp_video_id_list.append(int(item['videoid']))
  49. else:
  50. temp_video_id_list.append(int(item['videoid']))
  51. # print(top10_abnormal_videos)
  52. log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
  53. return top10_abnormal_videos
  54. def predict_video_share_rate(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
  55. """预估视频有广告时分享率"""
  56. # 获取对应的视频特征
  57. video_df = video_initial_df.copy()
  58. video_df['apptype'] = video_df['apptype'].astype(int)
  59. video_df = video_df[video_df['apptype'] == int(data_param)]
  60. video_df['sharerate_all'].fillna(0, inplace=True)
  61. video_df['sharerate_ad'].fillna(0, inplace=True)
  62. video_df['sharerate_all'] = video_df['sharerate_all'].astype(float)
  63. video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float)
  64. # 获取有广告时所有视频近30天的分享率
  65. ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad'].values[0]
  66. video_df = video_df[video_df['videoid'] != 'allvideos']
  67. # 剔除异常视频数据
  68. video_df['videoid'] = video_df['videoid'].astype(int)
  69. top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
  70. # print(int(data_param), len(video_df), top10_abnormal_video_ids)
  71. if top10_abnormal_video_ids is not None:
  72. video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
  73. # print(len(video_df))
  74. # 计算视频有广告时分享率
  75. video_df['video_ad_share_rate'] = \
  76. video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all']
  77. video_df['video_ad_share_rate'].fillna(0, inplace=True)
  78. video_df = video_df[video_df['video_ad_share_rate'] != 0]
  79. # 结果写入redis
  80. key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}"
  81. redis_data = {}
  82. for index, item in video_df.iterrows():
  83. redis_data[int(item['videoid'])] = item['video_ad_share_rate']
  84. group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
  85. redis_data[-1] = group_ad_share_rate_mean
  86. # 异常视频给定值:mean/3
  87. if top10_abnormal_video_ids is not None:
  88. abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1)
  89. print(data_key, data_param, abnormal_video_param)
  90. for abnormal_video_id in top10_abnormal_video_ids:
  91. print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param)
  92. redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param
  93. if len(redis_data) > 0:
  94. redis_helper = RedisHelper()
  95. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  96. return video_df
  97. def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
  98. """预估视频有广告时分享率"""
  99. # 获取视频特征
  100. video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  101. for data_key, data_param in update_params.items():
  102. log_.info(f"data_key = {data_key} update start...")
  103. predict_video_share_rate(video_initial_df=video_initial_df, dt=dt, data_key=data_key, data_param=data_param,
  104. top10_abnormal_videos=top10_abnormal_videos)
  105. log_.info(f"data_key = {data_key} update end!")
  106. def timer_check(dt, video_key, video_params, top10_abnormal_videos):
  107. log_.info(f"video_key = {video_key}")
  108. project = config_.ad_model_data[video_key].get('project')
  109. table = config_.ad_model_data[video_key].get('table')
  110. # 查看当前更新的数据是否已准备好
  111. data_count = data_check(project=project, table=table, dt=dt)
  112. if data_count > 0:
  113. log_.info(f"ad video data count = {data_count}")
  114. # 数据准备好,进行更新
  115. update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
  116. top10_abnormal_videos=top10_abnormal_videos)
  117. log_.info(f"video_key = {video_key} ad video data update end!")
  118. msg_list = [
  119. f"env: rov-offline {config_.ENV_TEXT}",
  120. f"video_key: {video_key}",
  121. f"now_date: {dt}",
  122. f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
  123. ]
  124. send_msg_to_feishu_new(
  125. webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
  126. key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
  127. title='广告模型视频分享率预测数据更新完成',
  128. msg_list=msg_list
  129. )
  130. else:
  131. # 数据没准备好,1分钟后重新检查
  132. Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
  133. def main():
  134. try:
  135. now_date = datetime.datetime.today()
  136. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  137. log_.info(f"now_date: {dt}")
  138. # 获取昨天top10中的异常视频(裂变视频)
  139. top10_abnormal_videos = get_top10_abnormal_videos_return(
  140. dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
  141. )
  142. update_params = config_.AD_VIDEO_DATA_PARAMS
  143. pool = multiprocessing.Pool(processes=len(update_params))
  144. for video_key, video_params in update_params.items():
  145. pool.apply_async(
  146. func=timer_check,
  147. args=(dt, video_key, video_params, top10_abnormal_videos)
  148. )
  149. pool.close()
  150. pool.join()
  151. # for video_key, video_params in update_params.items():
  152. # timer_check(dt, video_key, video_params, top10_abnormal_videos)
  153. except Exception as e:
  154. log_.error(f"视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  155. msg_list = [
  156. f"env: rov-offline {config_.ENV_TEXT}",
  157. f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
  158. f"exception: {e}",
  159. f"traceback: {traceback.format_exc()}",
  160. ]
  161. send_msg_to_feishu_new(
  162. webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
  163. key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
  164. title='广告模型视频分享率预测数据更新失败',
  165. msg_list=msg_list
  166. )
  167. if __name__ == '__main__':
  168. # timer_check()
  169. main()