ad_user_data_update_with_new_strategy.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. import datetime
  2. import traceback
  3. from threading import Timer
  4. from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu
  5. from config import set_config
  6. from log import Log
  7. config_, _ = set_config()
  8. log_ = Log()
  9. redis_helper = RedisHelper()
  10. features = [
  11. 'apptype',
  12. 'group',
  13. 'ad_type', # 0: all, 1: 自营,2: 微信
  14. 'sharerate', # 分享的概率
  15. 'no_ad_rate', # 不出广告的概率
  16. 'no_adrate_share', # 分享的情况下且不出广告的概率
  17. 'ad_rate', # 出广告的概率
  18. 'adrate_share', # 分享的情况下且出广告的概率
  19. ]
  20. def predict_user_group_share_rate_with_ad(user_group_initial_df, dt, data_params, rule_params, param):
  21. """预估用户组有广告时的分享率"""
  22. # 获取对应的参数
  23. data_key = param.get('data')
  24. data_param = data_params.get(data_key)
  25. rule_key = param.get('rule')
  26. rule_param = rule_params.get(rule_key)
  27. # 获取对应的用户组特征
  28. user_group_df = user_group_initial_df.copy()
  29. # 获取所有广告类型对应的数据
  30. user_group_df['ad_type'] = user_group_df['ad_type'].astype(int)
  31. user_group_df = user_group_df[user_group_df['ad_type'] == 0]
  32. user_group_df['apptype'] = user_group_df['apptype'].astype(int)
  33. user_group_df = user_group_df[user_group_df['apptype'] == data_param]
  34. user_group_df['ad_rate'].fillna(0, inplace=True)
  35. user_group_df['sharerate'].fillna(0, inplace=True)
  36. user_group_df['adrate_share'].fillna(0, inplace=True)
  37. user_group_df['ad_rate'] = user_group_df['ad_rate'].astype(float)
  38. user_group_df['sharerate'] = user_group_df['sharerate'].astype(float)
  39. user_group_df['adrate_share'] = user_group_df['adrate_share'].astype(float)
  40. # 获取对应的用户分组数据
  41. user_group_list = rule_param.get('group_list')
  42. user_group_df = user_group_df[user_group_df['group'].isin(user_group_list)]
  43. # 计算用户组有广告时分享率
  44. user_group_df = user_group_df[user_group_df['ad_rate'] != 0]
  45. user_group_df['group_ad_share_rate'] = \
  46. user_group_df['adrate_share'] * user_group_df['sharerate'] / user_group_df['ad_rate']
  47. user_group_df['group_ad_share_rate'].fillna(0, inplace=True)
  48. # 结果写入redis
  49. key_name = f"{config_.KEY_NAME_PREFIX_GROUP_WITH_AD}{data_key}:{rule_key}:{dt}"
  50. redis_data = {}
  51. for index, item in user_group_df.iterrows():
  52. redis_data[item['group']] = item['group_ad_share_rate']
  53. group_ad_share_rate_mean = user_group_df['group_ad_share_rate'].mean()
  54. redis_data['mean_group'] = group_ad_share_rate_mean
  55. if len(redis_data) > 0:
  56. redis_helper = RedisHelper()
  57. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  58. return user_group_df
  59. def predict_user_group_share_rate_no_ad(user_group_initial_df, dt, data_params, rule_params, param):
  60. """预估用户组无广告时的分享率"""
  61. # 获取对应的参数
  62. data_key = param.get('data')
  63. data_param = data_params.get(data_key)
  64. rule_key = param.get('rule')
  65. rule_param = rule_params.get(rule_key)
  66. # 获取对应的用户组特征
  67. user_group_df = user_group_initial_df.copy()
  68. # 获取所有广告类型对应的数据
  69. user_group_df['ad_type'] = user_group_df['ad_type'].astype(int)
  70. user_group_df = user_group_df[user_group_df['ad_type'] == 0]
  71. user_group_df['apptype'] = user_group_df['apptype'].astype(int)
  72. user_group_df = user_group_df[user_group_df['apptype'] == data_param]
  73. user_group_df['no_ad_rate'].fillna(0, inplace=True)
  74. user_group_df['sharerate'].fillna(0, inplace=True)
  75. user_group_df['no_adrate_share'].fillna(0, inplace=True)
  76. user_group_df['no_ad_rate'] = user_group_df['no_ad_rate'].astype(float)
  77. user_group_df['sharerate'] = user_group_df['sharerate'].astype(float)
  78. user_group_df['no_adrate_share'] = user_group_df['no_adrate_share'].astype(float)
  79. # 获取对应的用户分组数据
  80. user_group_list = rule_param.get('group_list')
  81. user_group_df = user_group_df[user_group_df['group'].isin(user_group_list)]
  82. # 计算用户组有广告时分享率
  83. user_group_df = user_group_df[user_group_df['ad_rate'] != 0]
  84. user_group_df['group_no_ad_share_rate'] = \
  85. user_group_df['no_adrate_share'] * user_group_df['sharerate'] / user_group_df['no_ad_rate']
  86. user_group_df['group_no_ad_share_rate'].fillna(0, inplace=True)
  87. # 结果写入redis
  88. key_name = f"{config_.KEY_NAME_PREFIX_GROUP_NO_AD}{data_key}:{rule_key}:{dt}"
  89. redis_data = {}
  90. for index, item in user_group_df.iterrows():
  91. redis_data[item['group']] = item['group_no_ad_share_rate']
  92. group_ad_share_rate_mean = user_group_df['group_no_ad_share_rate'].mean()
  93. redis_data['mean_group'] = group_ad_share_rate_mean
  94. if len(redis_data) > 0:
  95. redis_helper = RedisHelper()
  96. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  97. return user_group_df
  98. def update_users_data(project, table, dt, update_params):
  99. """预估用户组有广告时分享率"""
  100. # 获取用户组特征
  101. user_group_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  102. data_params = update_params.get('data_params')
  103. rule_params = update_params.get('rule_params')
  104. for param in update_params.get('params_list'):
  105. log_.info(f"param = {param} update start...")
  106. predict_user_group_share_rate_with_ad(user_group_initial_df=user_group_initial_df,
  107. dt=dt,
  108. data_params=data_params,
  109. rule_params=rule_params,
  110. param=param)
  111. predict_user_group_share_rate_no_ad(user_group_initial_df=user_group_initial_df,
  112. dt=dt,
  113. data_params=data_params,
  114. rule_params=rule_params,
  115. param=param)
  116. log_.info(f"param = {param} update end!")
  117. def timer_check():
  118. try:
  119. update_params = config_.AD_USER_PARAMS_NEW_STRATEGY
  120. project = config_.ad_model_data['users_share_rate_new_strategy'].get('project')
  121. table = config_.ad_model_data['users_share_rate_new_strategy'].get('table')
  122. now_date = datetime.datetime.today()
  123. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  124. log_.info(f"now_date: {dt}")
  125. # 查看当前更新的数据是否已准备好
  126. data_count = data_check(project=project, table=table, dt=dt)
  127. if data_count > 0:
  128. log_.info(f"ad user group data count = {data_count}")
  129. # 数据准备好,进行更新
  130. update_users_data(project=project, table=table, dt=dt, update_params=update_params)
  131. log_.info(f"ad user group data update end!")
  132. else:
  133. # 数据没准备好,1分钟后重新检查
  134. Timer(60, timer_check).start()
  135. except Exception as e:
  136. log_.error(f"新策略 -- 用户组分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  137. send_msg_to_feishu(
  138. webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
  139. key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
  140. msg_text=f"rov-offline{config_.ENV_TEXT} - 新策略 -- 用户组分享率预测数据更新失败\n"
  141. f"exception: {e}\n"
  142. f"traceback: {traceback.format_exc()}"
  143. )
  144. if __name__ == '__main__':
  145. timer_check()