123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- import pandas as pd
- import math
- import traceback
- from functools import reduce
- from odps import ODPS
- from threading import Timer
- from datetime import datetime, timedelta
- from get_data import get_data_from_odps
- from db_helper import RedisHelper
- from my_utils import filter_video_status, check_table_partition_exits, filter_video_status_app, send_msg_to_feishu
- from my_config import set_config
- from log import Log
- config_, _ = set_config()
- log_ = Log()
- RULE_PARAMS = {
- 'rule_params': {
- 'rule66': {'view_type': 'video-show', 'platform_return_rate': 0.001},
- },
- 'data_params': config_.DATA_PARAMS,
- 'params_list': [
- {'data': 'data66', 'rule': 'rule66'},
- ],
- }
- features = [
- 'apptype',
- 'videoid',
- 'lastonehour_preview', # 过去1小时预曝光人数 - 区分地域
- 'lastonehour_view', # 过去1小时曝光人数 - 区分地域
- 'lastonehour_play', # 过去1小时播放人数 - 区分地域
- 'lastonehour_share', # 过去1小时分享人数 - 区分地域
- 'lastonehour_return', # 过去1小时分享,过去1小时回流人数 - 区分地域
- 'lastonehour_preview_total', # 过去1小时预曝光次数 - 区分地域
- 'lastonehour_view_total', # 过去1小时曝光次数 - 区分地域
- 'lastonehour_play_total', # 过去1小时播放次数 - 区分地域
- 'lastonehour_share_total', # 过去1小时分享次数 - 区分地域
- 'platform_return',
- 'lastonehour_show', # 不区分地域
- 'lasttwohour_share', # h-2小时分享人数
- 'lasttwohour_return_now', # h-2分享,过去1小时回流人数
- 'lasttwohour_return', # h-2分享,h-2回流人数
- 'lastthreehour_share', # h-3小时分享人数
- 'lastthreehour_return_now', # h-3分享,过去1小时回流人数
- 'lastthreehour_return', # h-3分享,h-3回流人数
- 'lastonehour_return_new', # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- 'lasttwohour_return_now_new', # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- 'lasttwohour_return_new', # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- 'lastthreehour_return_now_new', # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- 'lastthreehour_return_new', # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- 'platform_return_new', # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
- ]
- def h_data_check(project, table, now_date):
- """检查数据是否准备好"""
- odps = ODPS(
- access_id=config_.ODPS_CONFIG['ACCESSID'],
- secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
- project=project,
- endpoint=config_.ODPS_CONFIG['ENDPOINT'],
- connect_timeout=3000,
- read_timeout=500000,
- pool_maxsize=1000,
- pool_connections=1000
- )
- try:
- dt = datetime.strftime(now_date, '%Y%m%d%H')
- check_res = check_table_partition_exits(date=dt, project=project, table=table)
- if check_res:
- sql = f'select * from {project}.{table} where dt = {dt}'
- with odps.execute_sql(sql=sql).open_reader() as reader:
- data_count = reader.count
- else:
- data_count = 0
- except Exception as e:
- data_count = 0
- return data_count
- def h_rank_bottom(now_date, now_h, rule_params):
- """未按时更新数据,用上一小时结果作为当前小时的数据"""
- redis_helper = RedisHelper()
- if now_h == 0:
- redis_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
- redis_h = 23
- else:
- redis_dt = datetime.strftime(now_date, '%Y%m%d')
- redis_h = now_h - 1
- key_prefix = config_.RECALL_KEY_NAME_PREFIX_BY_H_H
- for param in rule_params.get('params_list'):
- data_key = param.get('data')
- rule_key = param.get('rule')
- log_.info(f"data_key = {data_key}, rule_key = {rule_key}")
- key_name = f"{key_prefix}{data_key}:{rule_key}:{redis_dt}:{redis_h}"
- initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
- if initial_data is None:
- initial_data = []
- final_data = dict()
- for video_id, score in initial_data:
- final_data[video_id] = score
- # 存入对应的redis
- final_key_name = \
- f"{key_prefix}{data_key}:{rule_key}:{datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
- if len(final_data) > 0:
- redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 3600)
- def get_feature_data(project, table, now_date):
- """获取特征数据"""
- dt = datetime.strftime(now_date, '%Y%m%d%H')
- records = get_data_from_odps(date=dt, project=project, table=table)
- feature_data = []
- for record in records:
- item = {}
- for feature_name in features:
- item[feature_name] = record[feature_name]
- feature_data.append(item)
- feature_df = pd.DataFrame(feature_data)
- return feature_df
- def cal_score(df, param):
- # score = sharerate * backrate * LOG(lastonehour_return + 1) * K2
- # sharerate = lastonehour_share / (lastonehour_play + 1000)
- # backrate = lastonehour_return / (lastonehour_share + 10)
- # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
- df = df.fillna(0)
- df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
- df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
- df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
- if param.get('view_type', None) == 'video-show':
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
- else:
- df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
- df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
- df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
- df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
- df = df.sort_values(by=['score'], ascending=False)
- return df
- def merge_df(df_left, df_right):
- """
- df按照videoid 合并,对应特征求和
- :param df_left:
- :param df_right:
- :return:
- """
- df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
- df_merged.fillna(0, inplace=True)
- feature_list = ['videoid']
- for feature in features:
- if feature in ['apptype', 'videoid']:
- continue
- df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
- feature_list.append(feature)
- return df_merged[feature_list]
- def merge_df_with_score(df_left, df_right):
- """
- df 按照videoid合并,平台回流人数、回流人数、分数 分别求和
- :param df_left:
- :param df_right:
- :return:
- """
- df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
- df_merged.fillna(0, inplace=True)
- feature_list = ['videoid', 'lastonehour_return', 'platform_return', 'score']
- for feature in feature_list[1:]:
- df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
- return df_merged[feature_list]
- def video_rank_h(df, now_date, now_h, rule_key, param, data_key):
- """
- 获取符合进入召回源条件的视频
- """
- redis_helper = RedisHelper()
- log_.info(f"一共有多少个视频 = {len(df)}")
- # videoid重复时,保留分值高
- df = df.sort_values(by=['score'], ascending=False)
- df = df.drop_duplicates(subset=['videoid'], keep='first')
- df['videoid'] = df['videoid'].astype(int)
- # 获取符合进入召回源条件的视频
- platform_return_rate = param.get('platform_return_rate', 0)
- h_recall_df = df[df['platform_return_rate'] > platform_return_rate]
- h_recall_videos = h_recall_df['videoid'].to_list()
- log_.info(f"回流率-过滤后,一共有多少个视频 = {len(h_recall_videos)}")
- # 视频状态过滤
- if data_key in ['data7', ]:
- filtered_videos = filter_video_status_app(h_recall_videos)
- else:
- filtered_videos = filter_video_status(h_recall_videos)
- log_.info(f"视频状态-过滤后,一共有多少个视频 = {len(filtered_videos)}")
- # 写入对应的redis
- now_dt = datetime.strftime(now_date, '%Y%m%d')
- h_video_ids = []
- h_recall_result = {}
- for video_id in filtered_videos:
- score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
- h_recall_result[int(video_id)] = float(score)
- h_video_ids.append(int(video_id))
- # recall:item:score:h:
- h_recall_key_name = \
- f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{rule_key}:{now_dt}:{now_h}"
- log_.info("打印非地域24小时redis key:{}".format(h_recall_key_name))
- if len(h_recall_result) > 0:
- log_.info(f"开始写入头部数据:count = {len(h_recall_result)}, key = {h_recall_key_name}")
- redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 3600)
- else:
- log_.info(f"无数据,不写入。")
- def rank_by_h(now_date, now_h, rule_params, project, table):
- # 获取特征数据
- feature_df = get_feature_data(now_date=now_date, project=project, table=table)
- feature_df['apptype'] = feature_df['apptype'].astype(int)
- # rank
- data_params_item = rule_params.get('data_params')
- rule_params_item = rule_params.get('rule_params')
- for param in rule_params.get('params_list'):
- score_df_list = []
- data_key = param.get('data')
- data_param = data_params_item.get(data_key)
- log_.info(f"data_key = {data_key}, data_param = {data_param}")
- rule_key = param.get('rule')
- rule_param = rule_params_item.get(rule_key)
- log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
- merge_func = rule_param.get('merge_func', 1)
- log_.info("数据采用:{},统计采用{}.".format(data_key, rule_key))
- log_.info("具体的规则是:{}.".format(rule_param))
- if merge_func == 2:
- for apptype, weight in data_param.items():
- df = feature_df[feature_df['apptype'] == apptype]
- # 计算score
- score_df = cal_score(df=df, param=rule_param)
- score_df['score'] = score_df['score'] * weight
- score_df_list.append(score_df)
- # 分数合并
- df_merged = reduce(merge_df_with_score, score_df_list)
- # 更新平台回流比
- df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastonehour_return']
- video_rank_h(df=df_merged, now_date=now_date, now_h=now_h,
- rule_key=rule_key, param=rule_param, data_key=data_key)
- else:
- df_list = [feature_df[feature_df['apptype'] == apptype] for apptype, _ in data_param.items()]
- df_merged = reduce(merge_df, df_list)
- score_df = cal_score(df=df_merged, param=rule_param)
- video_rank_h(df=score_df, now_date=now_date, now_h=now_h,
- rule_key=rule_key, param=rule_param, data_key=data_key)
- def h_timer_check():
- try:
- project = config_.PROJECT_H_APP_TYPE
- table = config_.TABLE_H_APP_TYPE
- rule_params = RULE_PARAMS
- now_date = datetime.today()
- log_.info(f"开始执行: {datetime.strftime(now_date, '%Y%m%d%H')}")
- now_min = datetime.now().minute
- now_h = datetime.now().hour
- if now_h == 0:
- log_.info("当前时间{}小时,使用bottom的data,开始。".format(now_h))
- h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
- log_.info("----------当前时间{}小时,使用bottom的data,完成----------".format(now_h))
- return
- # 查看当前小时级更新的数据是否已准备好
- h_data_count = h_data_check(project=project, table=table, now_date=now_date)
- if h_data_count > 0:
- log_.info('上游数据表查询数据条数 h_data_count = {},开始计算。'.format(h_data_count))
- # 数据准备好,进行更新
- rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params, project=project, table=table)
- log_.info("数据4----------正常完成----------")
- elif now_min > 40:
- log_.info('当前分钟超过40,预计执行无法完成,使用 bottom data!')
- h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
- log_.info('----------当前分钟超过40,使用bottom的data,完成----------')
- else:
- log_.info("上游数据未就绪,等待...")
- Timer(60, h_timer_check).start()
- except Exception as e:
- log_.error(f"不区分地域小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
- send_msg_to_feishu(
- webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
- key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
- msg_text=f"rov-offline{config_.ENV_TEXT} - 不区分地域小时级数据更新失败\n"
- f"exception: {e}\n"
- f"traceback: {traceback.format_exc()}"
- )
- if __name__ == '__main__':
- log_.info("文件alg_recsys_recall_1h_noregion.py:「1小时无地域」 开始执行")
- h_timer_check()
|