123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- # coding utf-8
- import sys
- import math
- import traceback
- import pandas as pd
- from utils import send_msg_to_feishu
- from config import set_config
- from log import Log
- config_, _ = set_config()
- log_ = Log()
- features = [
- 'apptype',
- 'videoid',
- 'preview人数', # 过去24h预曝光人数
- 'view人数', # 过去24h曝光人数
- 'play人数', # 过去24h播放人数
- 'share人数', # 过去24h分享人数
- '回流人数', # 过去24h分享,过去24h回流人数
- 'preview次数', # 过去24h预曝光次数
- 'view次数', # 过去24h曝光次数
- 'play次数', # 过去24h播放次数
- 'share次数', # 过去24h分享次数
- 'platform_return',
- 'platform_preview',
- 'platform_preview_total',
- 'platform_show',
- 'platform_show_total',
- 'platform_view',
- 'platform_view_total',
- ]
- def data_group(data_path):
- """将数据按照videoid聚合(求和)"""
- f = open(data_path)
- index = 0
- data_dict = {}
- while True:
- line = f.readline()
- if not line:
- break
- if index == 0:
- index += 1
- continue
- index += 1
- items = line.strip().split(",")
- # print(items)
- if len(items) < len(features):
- continue
- video_id = items[1]
- if video_id not in data_dict:
- data_dict[video_id] = {'videoid': video_id}
- for i, feature in enumerate(features):
- if feature in ['apptype', 'videoid']:
- continue
- data_dict[video_id][feature] = int(float(items[i]))
- else:
- for i, feature in enumerate(features):
- if feature in ['apptype', 'videoid']:
- continue
- data_dict[video_id][feature] = data_dict[video_id][feature] + int(float(items[i]))
- f.close()
- data_list = [item for video_id, item in data_dict.items()]
- data_df = pd.DataFrame(data_list)
- return data_df
- def cal_score(data_df):
- """计算score"""
- df = data_df.copy()
- # share_rate_view = (share+1)/(view+1000)
- df['share_rate_view'] = (df['share人数'] + 1) / (df['view人数'] + 1000)
- # back_rate = (return+1)/(share+10)
- df['back_rate'] = (df['回流人数'] + 1) / (df['share人数'] + 10)
- df['log_back'] = (df['回流人数'] + 1).apply(math.log)
- # score1 = 回流/(view+10)
- df['24h_score1'] = df['回流人数'] / (df['view人数'] + 10)
- # score2 = share/view * back_rate * logback
- df['24h_score2'] = df['share_rate_view'] * df['back_rate'] * df['log_back']
- score_df = df[['videoid', '24h_score1', '24h_score2']]
- # print(score_df)
- return score_df
- if __name__ == "__main__":
- try:
- now_date = sys.argv[1]
- log_.info(f"now_date: {now_date}")
- data_path = f"./data/24h_video_data_{now_date}.csv"
- data_df = data_group(data_path=data_path)
- log_.info(f"24h data_df shape: {data_df.shape}")
- hour_score_path = f"./data/24h_score_{now_date}.csv"
- score_df = cal_score(data_df=data_df)
- score_df.to_csv(hour_score_path, index=False)
- log_.info(f"24h score_df shape: {score_df.shape}")
- except Exception as e:
- log_.error(f"rank 24h分值更新失败, exception: {e}, traceback: {traceback.format_exc()}")
- send_msg_to_feishu(
- webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
- key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
- msg_text=f"rov-offline{config_.ENV_TEXT} - rank 24h分值更新失败\n"
- f"exception: {e}\n"
- f"traceback: {traceback.format_exc()}"
- )
|