region_rule_rank_h.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. # -*- coding: utf-8 -*-
  2. # @ModuleName: region_rule_rank_h
  3. # @Author: Liqian
  4. # @Time: 2022/5/5 15:54
  5. # @Software: PyCharm
  6. import datetime
  7. import pandas as pd
  8. import math
  9. from odps import ODPS
  10. from threading import Timer
  11. from utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status
  12. from config import set_config
  13. from log import Log
  14. config_, _ = set_config()
  15. log_ = Log()
  16. region_code = {
  17. '河北省': '130000',
  18. '山西省': '140000',
  19. '辽宁省': '210000',
  20. '吉林省': '220000',
  21. '黑龙江省': '230000',
  22. '江苏省': '320000',
  23. '浙江省': '330000',
  24. '安徽省': '340000',
  25. '福建省': '350000',
  26. '江西省': '360000',
  27. '山东省': '370000',
  28. '河南省': '410000',
  29. '湖北省': '420000',
  30. '湖南省': '430000',
  31. '广东省': '440000',
  32. '海南省': '460000',
  33. '四川省': '510000',
  34. '贵州省': '520000',
  35. '云南省': '530000',
  36. '陕西省': '610000',
  37. '甘肃省': '620000',
  38. '青海省': '630000',
  39. '台湾省': '710000',
  40. '北京': '110000',
  41. '天津': '120000',
  42. '内蒙古': '150000',
  43. '上海': '310000',
  44. '广西': '450000',
  45. '重庆': '500000',
  46. '西藏': '540000',
  47. '宁夏': '640000',
  48. '新疆': '650000',
  49. '香港': '810000',
  50. '澳门': '820000',
  51. 'None': '-1'
  52. }
  53. features = [
  54. 'code',
  55. 'videoid',
  56. 'lastonehour_preview', # 过去1小时预曝光人数
  57. 'lastonehour_view', # 过去1小时曝光人数
  58. 'lastonehour_play', # 过去1小时播放人数
  59. 'lastonehour_share', # 过去1小时分享人数
  60. 'lastonehour_return', # 过去1小时分享,过去1小时回流人数
  61. 'lastonehour_preview_total', # 过去1小时预曝光次数
  62. 'lastonehour_view_total', # 过去1小时曝光次数
  63. 'lastonehour_play_total', # 过去1小时播放次数
  64. 'lastonehour_share_total', # 过去1小时分享次数
  65. 'platform_return',
  66. ]
  67. def get_region_code(region):
  68. """获取省份对应的code"""
  69. mysql_helper = MysqlHelper(mysql_info=config_.MYSQL_INFO)
  70. sql = f"SELECT ad_code FROM region_adcode WHERE parent_id = 0 AND region LIKE '{region}%';"
  71. ad_code = mysql_helper.get_data(sql=sql)
  72. return ad_code[0][0]
  73. def h_data_check(project, table, now_date):
  74. """检查数据是否准备好"""
  75. odps = ODPS(
  76. access_id=config_.ODPS_CONFIG['ACCESSID'],
  77. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  78. project=project,
  79. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  80. connect_timeout=3000,
  81. read_timeout=500000,
  82. pool_maxsize=1000,
  83. pool_connections=1000
  84. )
  85. try:
  86. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  87. sql = f'select * from {project}.{table} where dt = {dt}'
  88. with odps.execute_sql(sql=sql).open_reader() as reader:
  89. data_count = reader.count
  90. except Exception as e:
  91. data_count = 0
  92. return data_count
  93. def get_rov_redis_key(now_date):
  94. """获取rov模型结果存放key"""
  95. redis_helper = RedisHelper()
  96. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  97. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  98. if not redis_helper.key_exists(key_name=key_name):
  99. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  100. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  101. return key_name
  102. def get_feature_data(project, table, now_date):
  103. """获取特征数据"""
  104. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  105. # dt = '2022041310'
  106. records = get_data_from_odps(date=dt, project=project, table=table)
  107. feature_data = []
  108. for record in records:
  109. item = {}
  110. for feature_name in features:
  111. item[feature_name] = record[feature_name]
  112. feature_data.append(item)
  113. feature_df = pd.DataFrame(feature_data)
  114. return feature_df
  115. def cal_score(df):
  116. """
  117. 计算score
  118. :param df: 特征数据
  119. :return:
  120. """
  121. # score计算公式: sharerate*backrate*logback*ctr
  122. # sharerate = lastonehour_share/(lastonehour_play+1000)
  123. # backrate = lastonehour_return/(lastonehour_share+10)
  124. # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  125. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  126. df = df.fillna(0)
  127. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  128. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  129. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  130. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  131. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  132. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  133. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  134. df = df.sort_values(by=['score'], ascending=False)
  135. return df
  136. def video_rank(df, now_date, now_h, rule_key, param, region):
  137. """
  138. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  139. :param df:
  140. :param now_date:
  141. :param now_h:
  142. :param rule_key: 小时级数据进入条件
  143. :param param: 小时级数据进入条件参数
  144. :param region: 所属地域
  145. :return:
  146. """
  147. redis_helper = RedisHelper()
  148. # # 获取rov模型结果
  149. # key_name = get_rov_redis_key(now_date=now_date)
  150. # initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  151. # log_.info(f'initial data count = {len(initial_data)}')
  152. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  153. return_count = param.get('return_count', 1)
  154. score_value = param.get('score_rule', 0)
  155. platform_return_rate = param.get('platform_return_rate', 0)
  156. h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
  157. & (df['platform_return_rate'] >= platform_return_rate)]
  158. # videoid重复时,保留分值高
  159. h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
  160. h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  161. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  162. h_recall_videos = h_recall_df['videoid'].to_list()
  163. log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  164. # 视频状态过滤
  165. filtered_videos = filter_video_status(h_recall_videos)
  166. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  167. # 写入对应的redis
  168. h_video_ids = []
  169. h_recall_result = {}
  170. for video_id in filtered_videos:
  171. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  172. # print(score)
  173. h_recall_result[int(video_id)] = float(score)
  174. h_video_ids.append(int(video_id))
  175. h_recall_key_name = \
  176. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  177. if len(h_recall_result) > 0:
  178. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=23 * 3600)
  179. # 清空线上过滤应用列表
  180. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{rule_key}")
  181. # 去重更新rov模型结果,并另存为redis中
  182. # initial_data_dup = {}
  183. # for video_id, score in initial_data:
  184. # if int(video_id) not in h_video_ids:
  185. # initial_data_dup[int(video_id)] = score
  186. # log_.info(f"initial data dup count = {len(initial_data_dup)}")
  187. # initial_key_name = \
  188. # f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  189. # if len(initial_data_dup) > 0:
  190. # redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
  191. # 与其他召回视频池去重,存入对应的redis
  192. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
  193. def dup_to_redis(h_video_ids, now_date, now_h, rule_key, region):
  194. """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
  195. redis_helper = RedisHelper()
  196. # # ##### 去重更新地域分组天级列表,并另存为redis中
  197. # region_day_key_name = \
  198. # f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_DAY}{region}.rule1." \
  199. # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}"
  200. # if redis_helper.key_exists(key_name=region_day_key_name):
  201. # region_day_data = redis_helper.get_data_zset_with_index(
  202. # key_name=region_day_key_name, start=0, end=-1, with_scores=True)
  203. # log_.info(f'region day data count = {len(region_day_data)}')
  204. # region_day_dup = {}
  205. # for video_id, score in region_day_data:
  206. # if int(video_id) not in h_video_ids:
  207. # region_day_dup[int(video_id)] = score
  208. # h_video_ids.append(int(video_id))
  209. # log_.info(f"region day data dup count = {len(region_day_dup)}")
  210. # region_day_dup_key_name = \
  211. # f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_DAY_H}{region}.{rule_key}." \
  212. # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  213. # if len(region_day_dup) > 0:
  214. # redis_helper.add_data_with_zset(key_name=region_day_dup_key_name, data=region_day_dup, expire_time=23 * 3600)
  215. # ##### 去重更新地域分组小时级24h列表,并另存为redis中
  216. region_24h_key_name = \
  217. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}.rule1." \
  218. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  219. if redis_helper.key_exists(key_name=region_24h_key_name):
  220. region_24h_data = redis_helper.get_data_zset_with_index(
  221. key_name=region_24h_key_name, start=0, end=-1, with_scores=True)
  222. log_.info(f'region 24h data count = {len(region_24h_data)}')
  223. region_24h_dup = {}
  224. for video_id, score in region_24h_data:
  225. if int(video_id) not in h_video_ids:
  226. region_24h_dup[int(video_id)] = score
  227. h_video_ids.append(int(video_id))
  228. log_.info(f"region 24h data dup count = {len(region_24h_dup)}")
  229. region_24h_dup_key_name = \
  230. f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}.{rule_key}." \
  231. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  232. if len(region_24h_dup) > 0:
  233. redis_helper.add_data_with_zset(key_name=region_24h_dup_key_name, data=region_24h_dup, expire_time=23 * 3600)
  234. # ##### 去重小程序天级更新结果,并另存为redis中
  235. day_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_DAY}rule2.{datetime.datetime.strftime(now_date, '%Y%m%d')}"
  236. if redis_helper.key_exists(key_name=day_key_name):
  237. day_data = redis_helper.get_data_zset_with_index(
  238. key_name=day_key_name, start=0, end=-1, with_scores=True)
  239. log_.info(f'day data count = {len(day_data)}')
  240. day_dup = {}
  241. for video_id, score in day_data:
  242. if int(video_id) not in h_video_ids:
  243. day_dup[int(video_id)] = score
  244. h_video_ids.append(int(video_id))
  245. log_.info(f"day data dup count = {len(day_dup)}")
  246. day_dup_key_name = \
  247. f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_DAY_H}{region}.{rule_key}." \
  248. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  249. if len(day_dup) > 0:
  250. redis_helper.add_data_with_zset(key_name=day_dup_key_name, data=day_dup, expire_time=23 * 3600)
  251. # ##### 去重小程序模型更新结果,并另存为redis中
  252. model_key_name = get_rov_redis_key(now_date=now_date)
  253. model_data = redis_helper.get_data_zset_with_index(key_name=model_key_name, start=0, end=-1, with_scores=True)
  254. log_.info(f'model data count = {len(model_data)}')
  255. model_data_dup = {}
  256. for video_id, score in model_data:
  257. if int(video_id) not in h_video_ids:
  258. model_data_dup[int(video_id)] = score
  259. h_video_ids.append(int(video_id))
  260. log_.info(f"model data dup count = {len(model_data_dup)}")
  261. model_data_dup_key_name = \
  262. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H}{region}.{rule_key}." \
  263. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  264. if len(model_data_dup) > 0:
  265. redis_helper.add_data_with_zset(key_name=model_data_dup_key_name, data=model_data_dup, expire_time=23 * 3600)
  266. def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list):
  267. # 获取特征数据
  268. feature_df = get_feature_data(project=project, table=table, now_date=now_date)
  269. # 获取所有的region
  270. # region_code_list = list(set(feature_df[''].to_list()))
  271. # rank
  272. for key, value in rule_params.items():
  273. log_.info(f"rule = {key}, param = {value}")
  274. for region in region_code_list:
  275. log_.info(f"region = {region}")
  276. # 计算score
  277. region_df = feature_df[feature_df['code'] == region]
  278. log_.info(f'region_df count = {len(region_df)}')
  279. score_df = cal_score(df=region_df)
  280. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
  281. # to-csv
  282. score_filename = f"score_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  283. score_df.to_csv(f'./data/{score_filename}')
  284. # to-logs
  285. log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
  286. "region_code": region,
  287. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,
  288. "rule_key": key,
  289. "score_df": score_df[['videoid', 'score']]})
  290. def h_rank_bottom(now_date, now_h, rule_key, region_code_list):
  291. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  292. log_.info(f"rule_key = {rule_key}")
  293. # 获取rov模型结果
  294. redis_helper = RedisHelper()
  295. if now_h == 0:
  296. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  297. redis_h = 23
  298. else:
  299. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  300. redis_h = now_h - 1
  301. # key_prefix_list = [
  302. # config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,
  303. # config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_DAY_H,
  304. # config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_DAY_H,
  305. # config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H
  306. # ]
  307. # fea_df = get_feature_data(project=project, table=table, now_date=now_date - datetime.timedelta(hours=1))
  308. # region_list = list(set(fea_df[''].to_list()))
  309. # 以上一小时的地域分组数据作为当前小时的数据
  310. key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H
  311. for region in region_code_list:
  312. log_.info(f"region = {region}")
  313. key_name = f"{key_prefix}{region}.{rule_key}.{redis_dt}.{redis_h}"
  314. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  315. final_data = dict()
  316. h_video_ids = []
  317. for video_id, score in initial_data:
  318. final_data[video_id] = score
  319. h_video_ids.append(int(video_id))
  320. # 存入对应的redis
  321. final_key_name = \
  322. f"{key_prefix}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  323. if len(final_data) > 0:
  324. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  325. # 清空线上过滤应用列表
  326. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{rule_key}")
  327. # 与其他召回视频池去重,存入对应的redis
  328. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
  329. def h_timer_check():
  330. rule_params = config_.RULE_PARAMS_REGION
  331. project = config_.PROJECT_REGION
  332. table = config_.TABLE_REGION
  333. region_code_list = [code for region, code in region_code.items()]
  334. now_date = datetime.datetime.today()
  335. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  336. now_h = datetime.datetime.now().hour
  337. now_min = datetime.datetime.now().minute
  338. if now_h == 0:
  339. for key, _ in rule_params.items():
  340. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key, region_code_list=region_code_list)
  341. return
  342. # 查看当前小时更新的数据是否已准备好
  343. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  344. if h_data_count > 0:
  345. log_.info(f'h_data_count = {h_data_count}')
  346. # 数据准备好,进行更新
  347. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
  348. project=project, table=table, region_code_list=region_code_list)
  349. elif now_min > 50:
  350. log_.info('h_recall data is None, use bottom data!')
  351. for key, _ in rule_params.items():
  352. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key, region_code_list=region_code_list)
  353. else:
  354. # 数据没准备好,1分钟后重新检查
  355. Timer(60, h_timer_check).start()
  356. if __name__ == '__main__':
  357. h_timer_check()