rule_rank_h_new.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. import pandas as pd
  2. import math
  3. import traceback
  4. from functools import reduce
  5. from odps import ODPS
  6. from threading import Timer
  7. from datetime import datetime, timedelta
  8. from get_data import get_data_from_odps
  9. from db_helper import RedisHelper
  10. from my_utils import filter_video_status, check_table_partition_exits, filter_video_status_app, send_msg_to_feishu
  11. from config import set_config
  12. from log import Log
  13. config_, _ = set_config()
  14. log_ = Log()
  15. features = [
  16. 'apptype',
  17. 'videoid',
  18. 'lastonehour_preview', # 过去1小时预曝光人数 - 区分地域
  19. 'lastonehour_view', # 过去1小时曝光人数 - 区分地域
  20. 'lastonehour_play', # 过去1小时播放人数 - 区分地域
  21. 'lastonehour_share', # 过去1小时分享人数 - 区分地域
  22. 'lastonehour_return', # 过去1小时分享,过去1小时回流人数 - 区分地域
  23. 'lastonehour_preview_total', # 过去1小时预曝光次数 - 区分地域
  24. 'lastonehour_view_total', # 过去1小时曝光次数 - 区分地域
  25. 'lastonehour_play_total', # 过去1小时播放次数 - 区分地域
  26. 'lastonehour_share_total', # 过去1小时分享次数 - 区分地域
  27. 'platform_return',
  28. 'lastonehour_show', # 不区分地域
  29. 'lasttwohour_share', # h-2小时分享人数
  30. 'lasttwohour_return_now', # h-2分享,过去1小时回流人数
  31. 'lasttwohour_return', # h-2分享,h-2回流人数
  32. 'lastthreehour_share', # h-3小时分享人数
  33. 'lastthreehour_return_now', # h-3分享,过去1小时回流人数
  34. 'lastthreehour_return', # h-3分享,h-3回流人数
  35. 'lastonehour_return_new', # 过去1小时分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  36. 'lasttwohour_return_now_new', # h-2分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  37. 'lasttwohour_return_new', # h-2分享,h-2回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  38. 'lastthreehour_return_now_new', # h-3分享,过去1小时回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  39. 'lastthreehour_return_new', # h-3分享,h-3回流人数(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  40. 'platform_return_new', # 平台分发回流(回流统计为对应地域分享带回的回流,分享限制地域,回流不限制地域)
  41. ]
  42. def h_data_check(project, table, now_date):
  43. """检查数据是否准备好"""
  44. odps = ODPS(
  45. access_id=config_.ODPS_CONFIG['ACCESSID'],
  46. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  47. project=project,
  48. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  49. connect_timeout=3000,
  50. read_timeout=500000,
  51. pool_maxsize=1000,
  52. pool_connections=1000
  53. )
  54. try:
  55. dt = datetime.strftime(now_date, '%Y%m%d%H')
  56. check_res = check_table_partition_exits(date=dt, project=project, table=table)
  57. if check_res:
  58. sql = f'select * from {project}.{table} where dt = {dt}'
  59. with odps.execute_sql(sql=sql).open_reader() as reader:
  60. data_count = reader.count
  61. else:
  62. data_count = 0
  63. except Exception as e:
  64. data_count = 0
  65. return data_count
  66. def h_rank_bottom(now_date, now_h, rule_params):
  67. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  68. redis_helper = RedisHelper()
  69. if now_h == 0:
  70. redis_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
  71. redis_h = 23
  72. else:
  73. redis_dt = datetime.strftime(now_date, '%Y%m%d')
  74. redis_h = now_h - 1
  75. key_prefix = config_.RECALL_KEY_NAME_PREFIX_BY_H_H
  76. for param in rule_params.get('params_list'):
  77. data_key = param.get('data')
  78. rule_key = param.get('rule')
  79. log_.info(f"data_key = {data_key}, rule_key = {rule_key}")
  80. key_name = f"{key_prefix}{data_key}:{rule_key}:{redis_dt}:{redis_h}"
  81. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  82. if initial_data is None:
  83. initial_data = []
  84. final_data = dict()
  85. for video_id, score in initial_data:
  86. final_data[video_id] = score
  87. # 存入对应的redis
  88. final_key_name = \
  89. f"{key_prefix}{data_key}:{rule_key}:{datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  90. if len(final_data) > 0:
  91. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=2 * 3600)
  92. def get_feature_data(project, table, now_date):
  93. """获取特征数据"""
  94. dt = datetime.strftime(now_date, '%Y%m%d%H')
  95. records = get_data_from_odps(date=dt, project=project, table=table)
  96. feature_data = []
  97. for record in records:
  98. item = {}
  99. for feature_name in features:
  100. item[feature_name] = record[feature_name]
  101. feature_data.append(item)
  102. feature_df = pd.DataFrame(feature_data)
  103. return feature_df
  104. def cal_score(df, param):
  105. # score = sharerate * backrate * LOG(lastonehour_return + 1) * K2
  106. # sharerate = lastonehour_share / (lastonehour_play + 1000)
  107. # backrate = lastonehour_return / (lastonehour_share + 10)
  108. # ctr = lastonehour_play / (lastonehour_show + 1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  109. df = df.fillna(0)
  110. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  111. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  112. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  113. if param.get('view_type', None) == 'video-show':
  114. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  115. else:
  116. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  117. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  118. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  119. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  120. df = df.sort_values(by=['score'], ascending=False)
  121. return df
  122. def merge_df(df_left, df_right):
  123. """
  124. df按照videoid 合并,对应特征求和
  125. :param df_left:
  126. :param df_right:
  127. :return:
  128. """
  129. df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
  130. df_merged.fillna(0, inplace=True)
  131. feature_list = ['videoid']
  132. for feature in features:
  133. if feature in ['apptype', 'videoid']:
  134. continue
  135. df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
  136. feature_list.append(feature)
  137. return df_merged[feature_list]
  138. def merge_df_with_score(df_left, df_right):
  139. """
  140. df 按照videoid合并,平台回流人数、回流人数、分数 分别求和
  141. :param df_left:
  142. :param df_right:
  143. :return:
  144. """
  145. df_merged = pd.merge(df_left, df_right, on=['videoid'], how='outer', suffixes=['_x', '_y'])
  146. df_merged.fillna(0, inplace=True)
  147. feature_list = ['videoid', 'lastonehour_return', 'platform_return', 'score']
  148. for feature in feature_list[1:]:
  149. df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
  150. return df_merged[feature_list]
  151. def video_rank_h(df, now_date, now_h, rule_key, param, data_key):
  152. """
  153. 获取符合进入召回源条件的视频
  154. """
  155. redis_helper = RedisHelper()
  156. log_.info(f"videos_count = {len(df)}")
  157. # videoid重复时,保留分值高
  158. df = df.sort_values(by=['score'], ascending=False)
  159. df = df.drop_duplicates(subset=['videoid'], keep='first')
  160. df['videoid'] = df['videoid'].astype(int)
  161. # 获取符合进入召回源条件的视频
  162. platform_return_rate = param.get('platform_return_rate', 0)
  163. h_recall_df = df[df['platform_return_rate'] > platform_return_rate]
  164. h_recall_videos = h_recall_df['videoid'].to_list()
  165. log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  166. # 视频状态过滤
  167. if data_key in ['data7', ]:
  168. filtered_videos = filter_video_status_app(h_recall_videos)
  169. else:
  170. filtered_videos = filter_video_status(h_recall_videos)
  171. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  172. # 写入对应的redis
  173. now_dt = datetime.strftime(now_date, '%Y%m%d')
  174. h_video_ids = []
  175. h_recall_result = {}
  176. for video_id in filtered_videos:
  177. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  178. h_recall_result[int(video_id)] = float(score)
  179. h_video_ids.append(int(video_id))
  180. h_recall_key_name = \
  181. f"{config_.RECALL_KEY_NAME_PREFIX_BY_H_H}{data_key}:{rule_key}:{now_dt}:{now_h}"
  182. if len(h_recall_result) > 0:
  183. log_.info(f"count = {len(h_recall_result)}, key = {h_recall_key_name}")
  184. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=2 * 3600)
  185. def rank_by_h(now_date, now_h, rule_params, project, table):
  186. # 获取特征数据
  187. feature_df = get_feature_data(now_date=now_date, project=project, table=table)
  188. feature_df['apptype'] = feature_df['apptype'].astype(int)
  189. # rank
  190. data_params_item = rule_params.get('data_params')
  191. rule_params_item = rule_params.get('rule_params')
  192. for param in rule_params.get('params_list'):
  193. score_df_list = []
  194. data_key = param.get('data')
  195. data_param = data_params_item.get(data_key)
  196. log_.info(f"data_key = {data_key}, data_param = {data_param}")
  197. rule_key = param.get('rule')
  198. rule_param = rule_params_item.get(rule_key)
  199. log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  200. merge_func = rule_param.get('merge_func', 1)
  201. if merge_func == 2:
  202. for apptype, weight in data_param.items():
  203. df = feature_df[feature_df['apptype'] == apptype]
  204. # 计算score
  205. score_df = cal_score(df=df, param=rule_param)
  206. score_df['score'] = score_df['score'] * weight
  207. score_df_list.append(score_df)
  208. # 分数合并
  209. df_merged = reduce(merge_df_with_score, score_df_list)
  210. # 更新平台回流比
  211. df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastonehour_return']
  212. video_rank_h(df=df_merged, now_date=now_date, now_h=now_h,
  213. rule_key=rule_key, param=rule_param, data_key=data_key)
  214. else:
  215. df_list = [feature_df[feature_df['apptype'] == apptype] for apptype, _ in data_param.items()]
  216. df_merged = reduce(merge_df, df_list)
  217. score_df = cal_score(df=df_merged, param=rule_param)
  218. video_rank_h(df=score_df, now_date=now_date, now_h=now_h,
  219. rule_key=rule_key, param=rule_param, data_key=data_key)
  220. def h_timer_check():
  221. try:
  222. project = config_.PROJECT_H_APP_TYPE
  223. table = config_.TABLE_H_APP_TYPE
  224. rule_params = config_.RULE_PARAMS_H_APP_TYPE
  225. now_date = datetime.today()
  226. log_.info(f"now_date: {datetime.strftime(now_date, '%Y%m%d%H')}")
  227. now_min = datetime.now().minute
  228. now_h = datetime.now().hour
  229. redis_helper = RedisHelper()
  230. if now_h == 0:
  231. log_.info(f'now_h = {now_h} use bottom data!')
  232. h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
  233. log_.info(f"h_data end!")
  234. redis_helper.set_data_to_redis(
  235. key_name=f"{config_.RULE_H_DATA_STATUS}:{datetime.strftime(now_date, '%Y%m%d%H')}", value='1', expire_time=2 * 3600
  236. )
  237. log_.info(f"rule_h_data status update to '1' finished!")
  238. return
  239. # 查看当前小时级更新的数据是否已准备好
  240. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  241. if h_data_count > 0:
  242. log_.info(f'h_data_count = {h_data_count}')
  243. # 数据准备好,进行更新
  244. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params, project=project, table=table)
  245. log_.info(f"h_data end!")
  246. redis_helper.set_data_to_redis(
  247. key_name=f"{config_.RULE_H_DATA_STATUS}:{datetime.strftime(now_date, '%Y%m%d%H')}", value='1', expire_time=2 * 3600
  248. )
  249. log_.info(f"rule_h_data status update to '1' finished!")
  250. elif now_min > 40:
  251. log_.info('h_recall data is None, use bottom data!')
  252. h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params)
  253. log_.info(f"h_data end!")
  254. redis_helper.set_data_to_redis(
  255. key_name=f"{config_.RULE_H_DATA_STATUS}:{datetime.strftime(now_date, '%Y%m%d%H')}", value='1', expire_time=2 * 3600
  256. )
  257. log_.info(f"rule_h_data status update to '1' finished!")
  258. else:
  259. # 数据没准备好,1分钟后重新检查
  260. Timer(60, h_timer_check).start()
  261. except Exception as e:
  262. log_.error(f"不区分地域小时级数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  263. send_msg_to_feishu(
  264. webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
  265. key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
  266. msg_text=f"rov-offline{config_.ENV_TEXT} - 不区分地域小时级数据更新失败\n"
  267. f"exception: {e}\n"
  268. f"traceback: {traceback.format_exc()}"
  269. )
  270. if __name__ == '__main__':
  271. log_.info(f"h_data start...")
  272. h_timer_check()