rule_rank_day.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. import pandas as pd
  2. from odps import ODPS
  3. from datetime import datetime, timedelta
  4. from threading import Timer
  5. from my_utils import get_data_from_odps, filter_video_status
  6. from db_helper import RedisHelper
  7. from config import set_config
  8. from log import Log
  9. config_, _ = set_config()
  10. log_ = Log()
  11. features = [
  12. 'videoid',
  13. 'preview人数', # 过去1天预曝光人数
  14. 'view人数', # 过去1天曝光人数
  15. 'play人数', # 过去1天播放人数
  16. 'share人数', # 过去1天分享人数
  17. '回流人数', # 过去1天分享,过去1天回流人数
  18. 'preview次数', # 过去1天预曝光次数
  19. 'view次数', # 过去1天曝光次数
  20. 'play次数', # 过去1天播放次数
  21. 'share次数', # 过去1天分享次数
  22. 'platform_return',
  23. 'platform_preview',
  24. 'platform_preview_total',
  25. 'platform_show',
  26. 'platform_show_total',
  27. 'platform_view',
  28. 'platform_view_total',
  29. ]
  30. def get_rov_redis_key(now_date):
  31. # 获取rov模型结果存放key
  32. redis_helper = RedisHelper()
  33. now_dt = datetime.strftime(now_date, '%Y%m%d')
  34. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  35. key_dt = now_dt
  36. if not redis_helper.key_exists(key_name=key_name):
  37. pre_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
  38. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  39. key_dt = pre_dt
  40. return key_name, key_dt
  41. def day_data_check(project, table, now_date):
  42. """检查数据是否准备好"""
  43. odps = ODPS(
  44. access_id=config_.ODPS_CONFIG['ACCESSID'],
  45. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  46. project=project,
  47. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  48. connect_timeout=3000,
  49. read_timeout=500000,
  50. pool_maxsize=1000,
  51. pool_connections=1000
  52. )
  53. try:
  54. dt = datetime.strftime((now_date - timedelta(days=1)), '%Y%m%d')
  55. sql = f'select * from {project}.{table} where dt = {dt}'
  56. with odps.execute_sql(sql=sql).open_reader() as reader:
  57. data_count = reader.count
  58. except Exception as e:
  59. data_count = 0
  60. return data_count
  61. def get_feature_data(now_date, project, table):
  62. """获取特征数据"""
  63. dt = datetime.strftime((now_date - timedelta(days=1)), '%Y%m%d')
  64. # dt = '20220425'
  65. records = get_data_from_odps(date=dt, project=project, table=table)
  66. feature_data = []
  67. for record in records:
  68. item = {}
  69. for feature_name in features:
  70. item[feature_name] = record[feature_name]
  71. feature_data.append(item)
  72. feature_df = pd.DataFrame(feature_data)
  73. return feature_df
  74. def cal_score1(df):
  75. # score1计算公式: score = 回流人数/(view人数+10000)
  76. df = df.fillna(0)
  77. df['score'] = df['回流人数'] / (df['view人数'] + 1000)
  78. df = df.sort_values(by=['score'], ascending=False)
  79. return df
  80. def cal_score2(df):
  81. # score2计算公式: score = share次数/(view+1000)+0.01*return/(share次数+100)
  82. df = df.fillna(0)
  83. df['share_rate'] = df['share次数'] / (df['view人数'] + 1000)
  84. df['back_rate'] = df['回流人数'] / (df['share次数'] + 100)
  85. df['score'] = df['share_rate'] + 0.01 * df['back_rate']
  86. df['platform_return_rate'] = df['platform_return'] / df['回流人数']
  87. df = df.sort_values(by=['score'], ascending=False)
  88. return df
  89. def video_rank_day(df, now_date, rule_key, param):
  90. """
  91. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  92. :param df:
  93. :param now_date:
  94. :param rule_key: 天级规则数据进入条件
  95. :param param: 天级规则数据进入条件参数
  96. :return:
  97. """
  98. # 获取rov模型结果
  99. redis_helper = RedisHelper()
  100. key_name, key_dt = get_rov_redis_key(now_date=now_date)
  101. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  102. log_.info(f'initial data count = {len(initial_data)}, key_dt = {key_dt}')
  103. # 获取符合进入召回源条件的视频
  104. return_count = param.get('return_count')
  105. if return_count:
  106. day_recall_df = df[df['回流人数'] > return_count]
  107. else:
  108. day_recall_df = df
  109. platform_return_rate = param.get('platform_return_rate', 0)
  110. day_recall_df = day_recall_df[day_recall_df['platform_return_rate'] >= platform_return_rate]
  111. # videoid重复时,保留分值高
  112. day_recall_df = day_recall_df.sort_values(by=['score'], ascending=False)
  113. day_recall_df = day_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  114. day_recall_df['videoid'] = day_recall_df['videoid'].astype(int)
  115. day_recall_videos = day_recall_df['videoid'].to_list()
  116. log_.info(f'day_recall videos count = {len(day_recall_videos)}')
  117. # 视频状态过滤
  118. filtered_videos = filter_video_status(day_recall_videos)
  119. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  120. # 写入对应的redis
  121. day_video_ids =[]
  122. day_recall_result = {}
  123. for video_id in filtered_videos:
  124. score = day_recall_df[day_recall_df['videoid'] == video_id]['score']
  125. day_recall_result[int(video_id)] = float(score)
  126. day_video_ids.append(int(video_id))
  127. day_recall_key_name = \
  128. f"{config_.RECALL_KEY_NAME_PREFIX_BY_DAY}{rule_key}.{datetime.strftime(now_date, '%Y%m%d')}"
  129. if len(day_recall_result) > 0:
  130. redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=7 * 24 * 3600)
  131. # 去重更新rov模型结果,并另存为redis中
  132. initial_data_dup = {}
  133. for video_id, score in initial_data:
  134. if int(video_id) not in day_video_ids:
  135. initial_data_dup[int(video_id)] = score
  136. log_.info(f"initial data dup count = {len(initial_data_dup)}")
  137. now_dt = datetime.strftime(now_date, '%Y%m%d')
  138. if key_dt == now_dt:
  139. initial_key_name_prefix = config_.RECALL_KEY_NAME_PREFIX_DUP_DAY_NOW
  140. else:
  141. initial_key_name_prefix = config_.RECALL_KEY_NAME_PREFIX_DUP_DAY_PRE
  142. initial_key_name = f"{initial_key_name_prefix}{rule_key}.{now_dt}"
  143. if len(initial_data_dup) > 0:
  144. redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=7 * 24 * 3600)
  145. def rank_by_day(now_date, rule_params, project, table):
  146. # 获取特征数据
  147. feature_df = get_feature_data(now_date=now_date, project=project, table=table)
  148. # rank
  149. for key, value in rule_params.items():
  150. log_.info(f"rule = {key}, param = {value}")
  151. # 计算score
  152. cal_score_func = value.get('cal_score_func', 1)
  153. if cal_score_func == 2:
  154. score_df = cal_score2(df=feature_df)
  155. else:
  156. score_df = cal_score1(df=feature_df)
  157. video_rank_day(df=score_df, now_date=now_date, rule_key=key, param=value)
  158. # to-csv
  159. score_filename = f"score_{key}_{datetime.strftime(now_date, '%Y%m%d')}.csv"
  160. score_df.to_csv(f'./data/{score_filename}')
  161. # to-logs
  162. log_.info({"date": datetime.strftime(now_date, '%Y%m%d%H'),
  163. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_DAY,
  164. "rule_key": key,
  165. "score_df": score_df[['videoid', 'score']]})
  166. def day_rank_bottom(now_date, rule_key):
  167. """未按时更新数据,用模型召回数据作为当前的数据"""
  168. log_.info(f"rule_key = {rule_key}")
  169. now_dt = datetime.strftime(now_date, '%Y%m%d')
  170. redis_helper = RedisHelper()
  171. key_name, key_dt = get_rov_redis_key(now_date=now_date)
  172. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  173. final_data = dict()
  174. for video_id, score in initial_data:
  175. final_data[video_id] = score
  176. if key_dt == now_dt:
  177. key_name_prefix = config_.RECALL_KEY_NAME_PREFIX_DUP_DAY_NOW
  178. else:
  179. key_name_prefix = config_.RECALL_KEY_NAME_PREFIX_DUP_DAY_PRE
  180. key_name = f"{key_name_prefix}{rule_key}.{now_dt}"
  181. if len(final_data) > 0:
  182. redis_helper.add_data_with_zset(key_name=key_name, data=final_data, expire_time=7 * 24 * 3600)
  183. def day_timer_check():
  184. project = config_.PROJECT_DAY
  185. table = config_.TABLE_DAY
  186. rule_params = config_.RULE_PARAMS_DAY
  187. now_date = datetime.today()
  188. log_.info(f"now_date: {datetime.strftime(now_date, '%Y%m%d')}")
  189. now_min = datetime.now().minute
  190. # 查看当前天级更新的数据是否已准备好
  191. h_data_count = day_data_check(project=project, table=table, now_date=now_date)
  192. if h_data_count > 0:
  193. log_.info(f'h_data_count = {h_data_count}')
  194. # 数据准备好,进行更新
  195. rank_by_day(now_date=now_date, rule_params=rule_params, project=project, table=table)
  196. elif now_min > 50:
  197. log_.info('day_recall data is None!')
  198. for key, _ in rule_params.items():
  199. day_rank_bottom(now_date=now_date, rule_key=key)
  200. else:
  201. # 数据没准备好,1分钟后重新检查
  202. Timer(60, day_timer_check).start()
  203. if __name__ == '__main__':
  204. day_timer_check()