rule_rank_h_by_24h.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230
  1. import pandas as pd
  2. import math
  3. from odps import ODPS
  4. from threading import Timer
  5. from datetime import datetime, timedelta
  6. from get_data import get_data_from_odps
  7. from db_helper import RedisHelper
  8. from utils import filter_video_status
  9. from config import set_config
  10. from log import Log
  11. config_, _ = set_config()
  12. log_ = Log()
  13. features = [
  14. 'videoid',
  15. 'preview人数', # 过去24h预曝光人数
  16. 'view人数', # 过去24h曝光人数
  17. 'play人数', # 过去24h播放人数
  18. 'share人数', # 过去24h分享人数
  19. '回流人数', # 过去24h分享,过去24h回流人数
  20. 'preview次数', # 过去24h预曝光次数
  21. 'view次数', # 过去24h曝光次数
  22. 'play次数', # 过去24h播放次数
  23. 'share次数', # 过去24h分享次数
  24. ]
  25. def get_rov_redis_key(now_date):
  26. # 获取rov模型结果存放key
  27. redis_helper = RedisHelper()
  28. now_dt = datetime.strftime(now_date, '%Y%m%d')
  29. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  30. if not redis_helper.key_exists(key_name=key_name):
  31. pre_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
  32. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  33. return key_name
  34. def h_data_check(project, table, now_date):
  35. """检查数据是否准备好"""
  36. odps = ODPS(
  37. access_id=config_.ODPS_CONFIG['ACCESSID'],
  38. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  39. project=project,
  40. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  41. connect_timeout=3000,
  42. read_timeout=500000,
  43. pool_maxsize=1000,
  44. pool_connections=1000
  45. )
  46. try:
  47. dt = datetime.strftime(now_date, '%Y%m%d%H')
  48. sql = f'select * from {project}.{table} where dt = {dt}'
  49. with odps.execute_sql(sql=sql).open_reader() as reader:
  50. data_count = reader.count
  51. except Exception as e:
  52. data_count = 0
  53. return data_count
  54. def get_feature_data(now_date, project, table):
  55. """获取特征数据"""
  56. dt = datetime.strftime(now_date, '%Y%m%d%H')
  57. # dt = '20220425'
  58. records = get_data_from_odps(date=dt, project=project, table=table)
  59. feature_data = []
  60. for record in records:
  61. item = {}
  62. for feature_name in features:
  63. item[feature_name] = record[feature_name]
  64. feature_data.append(item)
  65. feature_df = pd.DataFrame(feature_data)
  66. return feature_df
  67. def cal_score1(df):
  68. # score1计算公式: score = 回流人数/(view人数+10000)
  69. df = df.fillna(0)
  70. df['score'] = df['回流人数'] / (df['view人数'] + 1000)
  71. df = df.sort_values(by=['score'], ascending=False)
  72. return df
  73. def cal_score2(df):
  74. # score2计算公式: score = share次数/(view+1000)+0.01*return/(share次数+100)
  75. df = df.fillna(0)
  76. df['share_rate'] = df['share次数'] / (df['view人数'] + 1000)
  77. df['back_rate'] = df['回流人数'] / (df['share次数'] + 100)
  78. df['score'] = df['share_rate'] + 0.01 * df['back_rate']
  79. df = df.sort_values(by=['score'], ascending=False)
  80. return df
  81. def video_rank_h(df, now_date, now_h, rule_key, param):
  82. """
  83. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  84. :param df:
  85. :param now_date:
  86. :param now_h:
  87. :param rule_key: 天级规则数据进入条件
  88. :param param: 天级规则数据进入条件参数
  89. :return:
  90. """
  91. # 获取rov模型结果
  92. redis_helper = RedisHelper()
  93. key_name = get_rov_redis_key(now_date=now_date)
  94. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  95. log_.info(f'initial data count = {len(initial_data)}')
  96. # 获取符合进入召回源条件的视频
  97. return_count = param.get('return_count')
  98. if return_count:
  99. day_recall_df = df[df['回流人数'] > return_count]
  100. else:
  101. day_recall_df = df
  102. # videoid重复时,保留分值高
  103. day_recall_df = day_recall_df.sort_values(by=['score'], ascending=False)
  104. day_recall_df = day_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  105. day_recall_df['videoid'] = day_recall_df['videoid'].astype(int)
  106. day_recall_videos = day_recall_df['videoid'].to_list()
  107. log_.info(f'h_by24h_recall videos count = {len(day_recall_videos)}')
  108. # 视频状态过滤
  109. filtered_videos = filter_video_status(day_recall_videos)
  110. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  111. # 写入对应的redis
  112. now_dt = datetime.strftime(now_date, '%Y%m%d')
  113. day_video_ids = []
  114. day_recall_result = {}
  115. for video_id in filtered_videos:
  116. score = day_recall_df[day_recall_df['videoid'] == video_id]['score']
  117. day_recall_result[int(video_id)] = float(score)
  118. day_video_ids.append(int(video_id))
  119. day_recall_key_name = \
  120. f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{rule_key}.{now_dt}.{now_h}"
  121. if len(day_recall_result) > 0:
  122. redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=23 * 3600)
  123. # 清空线上过滤应用列表
  124. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{rule_key}")
  125. # 去重更新rov模型结果,并另存为redis中
  126. initial_data_dup = {}
  127. for video_id, score in initial_data:
  128. if int(video_id) not in day_video_ids:
  129. initial_data_dup[int(video_id)] = score
  130. log_.info(f"initial data dup count = {len(initial_data_dup)}")
  131. initial_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_DUP_24H}{rule_key}.{now_dt}.{now_h}"
  132. if len(initial_data_dup) > 0:
  133. redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
  134. def rank_by_h(now_date, now_h, rule_params, project, table):
  135. # 获取特征数据
  136. feature_df = get_feature_data(now_date=now_date, project=project, table=table)
  137. # rank
  138. for key, value in rule_params.items():
  139. log_.info(f"rule = {key}, param = {value}")
  140. # 计算score
  141. cal_score_func = value.get('cal_score_func', 1)
  142. if cal_score_func == 2:
  143. score_df = cal_score2(df=feature_df)
  144. else:
  145. score_df = cal_score1(df=feature_df)
  146. video_rank_h(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value)
  147. # to-csv
  148. score_filename = f"score_by24h_{key}_{datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  149. score_df.to_csv(f'./data/{score_filename}')
  150. # to-logs
  151. log_.info({"date": datetime.strftime(now_date, '%Y%m%d%H'),
  152. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_24H,
  153. "rule_key": key,
  154. "score_df": score_df[['videoid', 'score']]})
  155. def h_rank_bottom(now_date, now_h, rule_key):
  156. """未按时更新数据,用模型召回数据作为当前的数据"""
  157. log_.info(f"rule_key = {rule_key}")
  158. # 获取rov模型结果
  159. redis_helper = RedisHelper()
  160. if now_h == 0:
  161. redis_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
  162. redis_h = 23
  163. else:
  164. redis_dt = datetime.strftime(now_date, '%Y%m%d')
  165. redis_h = now_h - 1
  166. key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_24H, config_.RECALL_KEY_NAME_PREFIX_DUP_24H]
  167. for key_prefix in key_prefix_list:
  168. key_name = f"{key_prefix}{rule_key}.{redis_dt}.{redis_h}"
  169. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  170. final_data = dict()
  171. for video_id, score in initial_data:
  172. final_data[video_id] = score
  173. # 存入对应的redis
  174. final_key_name = \
  175. f"{key_prefix}{rule_key}.{datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  176. if len(final_data) > 0:
  177. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  178. # 清空线上过滤应用列表
  179. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{rule_key}")
  180. def h_timer_check():
  181. project = config_.PROJECT_24H
  182. table = config_.TABLE_24H
  183. rule_params = config_.RULE_PARAMS_24H
  184. now_date = datetime.today()
  185. log_.info(f"now_date: {datetime.strftime(now_date, '%Y%m%d%H')}")
  186. now_min = datetime.now().minute
  187. now_h = datetime.now().hour
  188. # 查看当前天级更新的数据是否已准备好
  189. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  190. if h_data_count > 0:
  191. log_.info(f'h_by24h_data_count = {h_data_count}')
  192. # 数据准备好,进行更新
  193. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params, project=project, table=table)
  194. elif now_min > 50:
  195. log_.info('h_by24h_recall data is None!')
  196. for key, _ in rule_params.items():
  197. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  198. else:
  199. # 数据没准备好,1分钟后重新检查
  200. Timer(60, h_timer_check).start()
  201. if __name__ == '__main__':
  202. h_timer_check()