rule_rank_h.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. import datetime
  2. import pandas as pd
  3. import math
  4. from odps import ODPS
  5. from threading import Timer
  6. from get_data import get_data_from_odps
  7. from utils import filter_video_status
  8. from db_helper import RedisHelper
  9. from config import set_config
  10. from log import Log
  11. config_, _ = set_config()
  12. log_ = Log()
  13. project = 'loghubods'
  14. table = 'video_each_hour_update'
  15. features = [
  16. 'videoid',
  17. 'lastonehour_preview', # 过去1小时预曝光人数
  18. 'lastonehour_view', # 过去1小时曝光人数
  19. 'lastonehour_play', # 过去1小时播放人数
  20. 'lastonehour_share', # 过去1小时分享人数
  21. 'lastonehour_return', # 过去1小时分享,过去1小时回流人数
  22. 'lastonehour_preview_total_final', # 过去1小时预曝光次数
  23. 'lastonehour_view_total_final', # 过去1小时曝光次数
  24. 'lastonehour_play_total_final', # 过去1小时播放次数
  25. 'lastonehour_share_total_final', # 过去1小时分享次数
  26. 'lastonehour_show', # 过去1小时video_show人数
  27. 'lastonehour_show_total_final', # 过去1小时video_show次数
  28. ]
  29. def h_data_check(project, table, now_date):
  30. """检查数据是否准备好"""
  31. odps = ODPS(
  32. access_id=config_.ODPS_CONFIG['ACCESSID'],
  33. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  34. project=project,
  35. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  36. connect_timeout=3000,
  37. read_timeout=500000,
  38. pool_maxsize=1000,
  39. pool_connections=1000
  40. )
  41. try:
  42. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  43. sql = f'select * from {project}.{table} where dt = {dt}'
  44. with odps.execute_sql(sql=sql).open_reader() as reader:
  45. data_count = reader.count
  46. except Exception as e:
  47. data_count = 0
  48. return data_count
  49. def get_rov_redis_key(now_date):
  50. # 获取rov模型结果存放key
  51. redis_helper = RedisHelper()
  52. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  53. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  54. if not redis_helper.key_exists(key_name=key_name):
  55. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  56. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  57. return key_name
  58. def get_feature_data(now_date):
  59. """获取特征数据"""
  60. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  61. # dt = '2022041310'
  62. records = get_data_from_odps(date=dt, project=project, table=table)
  63. feature_data = []
  64. for record in records:
  65. item = {}
  66. for feature_name in features:
  67. item[feature_name] = record[feature_name]
  68. feature_data.append(item)
  69. feature_df = pd.DataFrame(feature_data)
  70. return feature_df
  71. def cal_score(df, param):
  72. """
  73. 计算score
  74. :param df: 特征数据
  75. :param param: 规则参数
  76. :return:
  77. """
  78. # score计算公式: sharerate*backrate*logback*ctr
  79. # sharerate = lastonehour_share/(lastonehour_play+1000)
  80. # backrate = lastonehour_return/(lastonehour_share+10)
  81. # ctr = lastonehour_play/(lastonehour_view+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  82. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  83. df = df.fillna(0)
  84. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  85. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  86. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  87. if param.get('view_type', None) == 'pre-view':
  88. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  89. elif param.get('view_type', None) == 'video-show':
  90. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  91. else:
  92. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_view'] + 1000)
  93. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  94. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  95. df = df.sort_values(by=['score'], ascending=False)
  96. return df
  97. def cal_score2(df):
  98. # score2计算公式: score = lastonehour_return/(lastonehour_view+1000)
  99. df = df.fillna(0)
  100. df['score'] = df['lastonehour_return'] / (df['lastonehour_view'] + 1000)
  101. df = df.sort_values(by=['score'], ascending=False)
  102. return df
  103. def cal_score3(df):
  104. # score3计算公式:
  105. # score = lastonehour_share_total_final/(lastonehour_view+1000)
  106. # + 0.03 * lastonehour_return/(lastonehour_share_total_final+1)
  107. df = df.fillna(0)
  108. df['share_rate'] = df['lastonehour_share_total_final'] / (df['lastonehour_view'] + 1000)
  109. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share_total_final'] + 1)
  110. df['score'] = df['share_rate'] + 0.03 * df['back_rate']
  111. df = df.sort_values(by=['score'], ascending=False)
  112. return df
  113. def video_rank(df, now_date, now_h, rule_key, param):
  114. """
  115. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  116. :param df:
  117. :param now_date:
  118. :param now_h:
  119. :param rule_key: 小时级数据进入条件
  120. :param param: 小时级数据进入条件参数
  121. :return:
  122. """
  123. # 获取rov模型结果
  124. redis_helper = RedisHelper()
  125. key_name = get_rov_redis_key(now_date=now_date)
  126. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  127. log_.info(f'initial data count = {len(initial_data)}')
  128. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  129. return_count = param.get('return_count')
  130. score_value = param.get('score_rule')
  131. h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)]
  132. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  133. h_recall_videos = h_recall_df['videoid'].to_list()
  134. log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  135. # 视频状态过滤
  136. filtered_videos = filter_video_status(h_recall_videos)
  137. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  138. # 写入对应的redis
  139. h_video_ids =[]
  140. h_recall_result = {}
  141. for video_id in filtered_videos:
  142. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  143. h_recall_result[int(video_id)] = float(score)
  144. h_video_ids.append(int(video_id))
  145. h_recall_key_name = \
  146. f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  147. if len(h_recall_result) > 0:
  148. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=23 * 3600)
  149. # 清空线上过滤应用列表
  150. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
  151. # 去重更新rov模型结果,并另存为redis中
  152. initial_data_dup = {}
  153. for video_id, score in initial_data:
  154. if int(video_id) not in h_video_ids:
  155. initial_data_dup[int(video_id)] = score
  156. log_.info(f"initial data dup count = {len(initial_data_dup)}")
  157. initial_key_name = \
  158. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  159. if len(initial_data_dup) > 0:
  160. redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
  161. # # 去重合并
  162. # final_videos = [int(item) for item in h_recall_videos]
  163. # temp_videos = [int(video_id) for video_id, _ in initial_data if int(video_id) not in final_videos]
  164. # final_videos = final_videos + temp_videos
  165. # log_.info(f'final videos count = {len(final_videos)}')
  166. #
  167. # # 重新给定score
  168. # final_data = {}
  169. # for i, video_id in enumerate(final_videos):
  170. # score = 100 - i * config_.ROV_SCORE_D
  171. # final_data[video_id] = score
  172. #
  173. # # 存入对应的redis
  174. # final_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  175. # redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=24 * 3600)
  176. def rank_by_h(now_date, now_h, rule_params):
  177. # 获取特征数据
  178. feature_df = get_feature_data(now_date=now_date)
  179. # rank
  180. for key, value in rule_params.items():
  181. log_.info(f"rule = {key}, param = {value}")
  182. # 计算score
  183. cal_score_func = value.get('cal_score_func', 0)
  184. if cal_score_func == 2:
  185. score_df = cal_score2(df=feature_df)
  186. elif cal_score_func == 3:
  187. score_df = cal_score3(df=feature_df)
  188. else:
  189. score_df = cal_score(df=feature_df, param=value)
  190. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value)
  191. # to-csv
  192. score_filename = f"score_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  193. score_df.to_csv(f'./data/{score_filename}')
  194. # to-logs
  195. log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
  196. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_H,
  197. "rule_key": key,
  198. "score_df": score_df[['videoid', 'score']]})
  199. def h_rank_bottom(now_date, now_h, rule_key):
  200. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  201. log_.info(f"rule_key = {rule_key}")
  202. # 获取rov模型结果
  203. redis_helper = RedisHelper()
  204. if now_h == 0:
  205. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  206. redis_h = 23
  207. else:
  208. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  209. redis_h = now_h - 1
  210. key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_H, config_.RECALL_KEY_NAME_PREFIX_DUP_H]
  211. for key_prefix in key_prefix_list:
  212. key_name = f"{key_prefix}{rule_key}.{redis_dt}.{redis_h}"
  213. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  214. final_data = dict()
  215. for video_id, score in initial_data:
  216. final_data[video_id] = score
  217. # 存入对应的redis
  218. final_key_name = \
  219. f"{key_prefix}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  220. if len(final_data) > 0:
  221. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  222. # 清空线上过滤应用列表
  223. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
  224. def h_timer_check():
  225. rule_params = config_.RULE_PARAMS
  226. # return_count_list = [20, 10]
  227. now_date = datetime.datetime.today()
  228. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  229. now_h = datetime.datetime.now().hour
  230. now_min = datetime.datetime.now().minute
  231. # if now_h == 0:
  232. # for key, _ in rule_params.items():
  233. # h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  234. # return
  235. # 查看当前小时更新的数据是否已准备好
  236. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  237. if h_data_count > 0:
  238. log_.info(f'h_data_count = {h_data_count}')
  239. # 数据准备好,进行更新
  240. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params)
  241. elif now_min > 50:
  242. log_.info('h_recall data is None, use bottom data!')
  243. for key, _ in rule_params.items():
  244. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  245. else:
  246. # 数据没准备好,1分钟后重新检查
  247. Timer(60, h_timer_check).start()
  248. if __name__ == '__main__':
  249. # df1 = get_feature_data()
  250. # res = cal_score(df=df1)
  251. # video_rank(df=res, now_date=datetime.datetime.today())
  252. # rank_by_h()
  253. h_timer_check()