ad_user_video_predict.py 3.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. import datetime
  2. import pandas as pd
  3. from odps import ODPS
  4. from utils import data_check, get_feature_data, send_msg_to_feishu
  5. from config import set_config
  6. from log import Log
  7. config_, _ = set_config()
  8. log_ = Log()
  9. def predict_user_group_share_rate(dt, app_type):
  10. """预估用户组对应的有广告时分享率"""
  11. # 获取用户组特征
  12. project = config_.ad_model_data['users_share_rate'].get('project')
  13. table = config_.ad_model_data['users_share_rate'].get('table')
  14. features = [
  15. 'apptype',
  16. 'group',
  17. 'sharerate_all',
  18. 'sharerate_ad'
  19. ]
  20. user_group_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  21. user_group_df['apptype'] = user_group_df['apptype'].astype(int)
  22. user_group_df = user_group_df[user_group_df['apptype'] == app_type]
  23. user_group_df['sharerate_all'] = user_group_df['sharerate_all'].astype(float)
  24. user_group_df['sharerate_ad'] = user_group_df['sharerate_ad'].astype(float)
  25. # 获取有广告时所有用户组近30天的分享率
  26. ad_all_group_share_rate = user_group_df[user_group_df['group'] == 'allmids']['sharerate_ad'].values[0]
  27. user_group_df = user_group_df[user_group_df['group'] != 'allmids']
  28. # 计算用户组有广告时分享率
  29. user_group_df['group_ad_share_rate'] = \
  30. user_group_df['sharerate_ad'] * float(ad_all_group_share_rate) / user_group_df['sharerate_all']
  31. return user_group_df
  32. def predict_video_share_rate(dt, app_type):
  33. """预估视频有广告时分享率"""
  34. # 获取视频特征
  35. project = config_.ad_model_data['videos_share_rate'].get('project')
  36. table = config_.ad_model_data['videos_share_rate'].get('table')
  37. features = [
  38. 'apptype',
  39. 'videoid',
  40. 'sharerate_all',
  41. 'sharerate_ad'
  42. ]
  43. video_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  44. video_df['apptype'] = video_df['apptype'].astype(int)
  45. video_df = video_df[video_df['apptype'] == app_type]
  46. video_df['sharerate_all'] = video_df['sharerate_all'].astype(float)
  47. video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float)
  48. # 获取有广告时所有视频近30天的分享率
  49. ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad'].values[0]
  50. video_df = video_df[video_df['videoid'] != 'allvideos']
  51. # 计算视频有广告时分享率
  52. video_df['video_ad_share_rate'] = \
  53. video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all']
  54. return video_df
  55. def predict_ad_group_video():
  56. app_type = config_.APP_TYPE['VLOG']
  57. now_date = datetime.datetime.today()
  58. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  59. user_group_df = predict_user_group_share_rate(dt=dt, app_type=app_type)
  60. video_df = predict_video_share_rate(dt=dt, app_type=app_type)
  61. print(f"user_group_df count = {len(user_group_df)}, \nvideo_df count = {len(video_df)}")
  62. predict_df = video_df
  63. for index, item in user_group_df.iterrows():
  64. predict_df[item['group']] = predict_df['video_ad_share_rate'] * item['group_ad_share_rate']
  65. predict_df.to_csv('./data/ad_user_video_predict.csv')
  66. return predict_df
  67. if __name__ == '__main__':
  68. predict_df = predict_ad_group_video()