rule_rank_h.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. import datetime
  2. import pandas as pd
  3. import math
  4. from odps import ODPS
  5. from threading import Timer
  6. from get_data import get_data_from_odps
  7. from db_helper import RedisHelper
  8. from config import set_config
  9. from log import Log
  10. config_, _ = set_config()
  11. log_ = Log()
  12. project = 'loghubods'
  13. table = 'video_each_hour_update'
  14. features = [
  15. 'videoid',
  16. 'lastonehour_preview', # 过去1小时预曝光人数
  17. 'lastonehour_view', # 过去1小时曝光人数
  18. 'lastonehour_play', # 过去1小时播放人数
  19. 'lastonehour_share', # 过去1小时分享人数
  20. 'lastonehour_return', # 过去1小时分享,过去1小时回流人数
  21. 'lastonehour_preview_total_final', # 过去1小时预曝光次数
  22. 'lastonehour_view_total_final', # 过去1小时曝光次数
  23. 'lastonehour_play_total_final', # 过去1小时播放次数
  24. 'lastonehour_share_total_final', # 过去1小时分享次数
  25. ]
  26. def h_data_check(project, table, now_date):
  27. """检查数据是否准备好"""
  28. odps = ODPS(
  29. access_id=config_.ODPS_CONFIG['ACCESSID'],
  30. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  31. project=project,
  32. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  33. connect_timeout=3000,
  34. read_timeout=500000,
  35. pool_maxsize=1000,
  36. pool_connections=1000
  37. )
  38. try:
  39. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  40. sql = f'select * from {project}.{table} where dt = {dt}'
  41. with odps.execute_sql(sql=sql).open_reader() as reader:
  42. data_count = reader.count
  43. except Exception as e:
  44. data_count = 0
  45. return data_count
  46. def get_rov_redis_key(now_date):
  47. # 获取rov模型结果存放key
  48. redis_helper = RedisHelper()
  49. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  50. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  51. if not redis_helper.key_exists(key_name=key_name):
  52. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  53. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  54. return key_name
  55. def get_feature_data(now_date):
  56. """获取特征数据"""
  57. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  58. # dt = '2022041310'
  59. records = get_data_from_odps(date=dt, project=project, table=table)
  60. feature_data = []
  61. for record in records:
  62. item = {}
  63. for feature_name in features:
  64. item[feature_name] = record[feature_name]
  65. feature_data.append(item)
  66. feature_df = pd.DataFrame(feature_data)
  67. return feature_df
  68. def cal_score(df, param):
  69. """
  70. 计算score
  71. :param df: 特征数据
  72. :param param: 规则参数
  73. :return:
  74. """
  75. # score计算公式: sharerate*backrate*logback*ctr
  76. # sharerate = lastonehour_share/(lastonehour_play+1000)
  77. # backrate = lastonehour_return/(lastonehour_share+10)
  78. # ctr = lastonehour_play/(lastonehour_view+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  79. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  80. df = df.fillna(0)
  81. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  82. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  83. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  84. if param.get('view_type', None) == 'pre-view':
  85. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  86. else:
  87. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_view'] + 1000)
  88. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  89. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  90. df = df.sort_values(by=['score'], ascending=False)
  91. return df
  92. def cal_score2(df):
  93. # score2计算公式: score = lastonehour_return/(lastonehour_view+1000)
  94. df = df.fillna(0)
  95. df['score'] = df['lastonehour_return'] / (df['lastonehour_view'] + 1000)
  96. df = df.sort_values(by=['score'], ascending=False)
  97. return df
  98. def cal_score3(df):
  99. # score3计算公式:
  100. # score = lastonehour_share_total_final/(lastonehour_view+1000)
  101. # + 0.03 * lastonehour_return/(lastonehour_share_total_final+1)
  102. df = df.fillna(0)
  103. df['share_rate'] = df['lastonehour_share_total_final'] / (df['lastonehour_view'] + 1000)
  104. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share_total_final'] + 1)
  105. df['score'] = df['share_rate'] + 0.03 * df['back_rate']
  106. df = df.sort_values(by=['score'], ascending=False)
  107. return df
  108. def video_rank(df, now_date, now_h, rule_key, param):
  109. """
  110. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  111. :param df:
  112. :param now_date:
  113. :param now_h:
  114. :param rule_key: 小时级数据进入条件
  115. :param param: 小时级数据进入条件参数
  116. :return:
  117. """
  118. # 获取rov模型结果
  119. redis_helper = RedisHelper()
  120. key_name = get_rov_redis_key(now_date=now_date)
  121. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  122. log_.info(f'initial data count = {len(initial_data)}')
  123. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  124. return_count = param.get('return_count')
  125. score_value = param.get('score_rule')
  126. h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)]
  127. h_recall_videos = h_recall_df['videoid'].to_list()
  128. log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  129. # 写入对应的redis
  130. h_video_ids =[]
  131. h_recall_result = {}
  132. for video_id in h_recall_videos:
  133. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  134. h_recall_result[int(video_id)] = float(score)
  135. h_video_ids.append(int(video_id))
  136. h_recall_key_name = \
  137. f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  138. if len(h_recall_result) > 0:
  139. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=23 * 3600)
  140. # 清空线上过滤应用列表
  141. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
  142. # 去重更新rov模型结果,并另存为redis中
  143. initial_data_dup = {}
  144. for video_id, score in initial_data:
  145. if int(video_id) not in h_video_ids:
  146. initial_data_dup[int(video_id)] = score
  147. log_.info(f"initial data dup count = {len(initial_data_dup)}")
  148. initial_key_name = \
  149. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  150. if len(initial_data_dup) > 0:
  151. redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
  152. # # 去重合并
  153. # final_videos = [int(item) for item in h_recall_videos]
  154. # temp_videos = [int(video_id) for video_id, _ in initial_data if int(video_id) not in final_videos]
  155. # final_videos = final_videos + temp_videos
  156. # log_.info(f'final videos count = {len(final_videos)}')
  157. #
  158. # # 重新给定score
  159. # final_data = {}
  160. # for i, video_id in enumerate(final_videos):
  161. # score = 100 - i * config_.ROV_SCORE_D
  162. # final_data[video_id] = score
  163. #
  164. # # 存入对应的redis
  165. # final_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  166. # redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=24 * 3600)
  167. def rank_by_h(now_date, now_h, rule_params):
  168. # 获取特征数据
  169. feature_df = get_feature_data(now_date=now_date)
  170. # rank
  171. for key, value in rule_params.items():
  172. log_.info(f"rule = {key}, param = {value}")
  173. # 计算score
  174. cal_score_func = value.get('cal_score_func', 0)
  175. if cal_score_func == 2:
  176. score_df = cal_score2(df=feature_df)
  177. elif cal_score_func == 3:
  178. score_df = cal_score3(df=feature_df)
  179. else:
  180. score_df = cal_score(df=feature_df, param=value)
  181. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value)
  182. # to-csv
  183. score_filename = f"score_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  184. score_df.to_csv(f'./data/{score_filename}')
  185. # to-logs
  186. log_.info({"redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_H,
  187. "rule_key": key,
  188. "score_df": score_df[['videoid', 'score']]})
  189. def h_rank_bottom(now_date, now_h, rule_key):
  190. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  191. log_.info(f"rule_key = {rule_key}")
  192. # 获取rov模型结果
  193. redis_helper = RedisHelper()
  194. if now_h == 0:
  195. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  196. redis_h = 23
  197. else:
  198. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  199. redis_h = now_h - 1
  200. key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_H, config_.RECALL_KEY_NAME_PREFIX_DUP_H]
  201. for key_prefix in key_prefix_list:
  202. key_name = f"{key_prefix}{rule_key}.{redis_dt}.{redis_h}"
  203. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  204. final_data = dict()
  205. for video_id, score in initial_data:
  206. final_data[video_id] = score
  207. # 存入对应的redis
  208. final_key_name = \
  209. f"{key_prefix}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  210. if len(final_data) > 0:
  211. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  212. # 清空线上过滤应用列表
  213. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
  214. def h_timer_check():
  215. rule_params = config_.RULE_PARAMS
  216. # return_count_list = [20, 10]
  217. now_date = datetime.datetime.today()
  218. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  219. now_h = datetime.datetime.now().hour
  220. now_min = datetime.datetime.now().minute
  221. if now_h == 0:
  222. for key, _ in rule_params.items():
  223. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  224. return
  225. # 查看当前小时更新的数据是否已准备好
  226. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  227. if h_data_count > 0:
  228. log_.info(f'h_data_count = {h_data_count}')
  229. # 数据准备好,进行更新
  230. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params)
  231. elif now_min > 50:
  232. log_.info('h_recall data is None, use bottom data!')
  233. for key, _ in rule_params.items():
  234. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  235. else:
  236. # 数据没准备好,1分钟后重新检查
  237. Timer(60, h_timer_check).start()
  238. if __name__ == '__main__':
  239. # df1 = get_feature_data()
  240. # res = cal_score(df=df1)
  241. # video_rank(df=res, now_date=datetime.datetime.today())
  242. # rank_by_h()
  243. h_timer_check()