rov_data_check.py 2.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. import datetime
  2. import os
  3. from odps import ODPS
  4. from datetime import datetime as dt
  5. from threading import Timer
  6. from config import set_config
  7. from log import Log
  8. config_ = set_config()
  9. log_ = Log()
  10. def rov_train_recall_pool_update():
  11. # 训练数据和预测数据都准备好时,更新模型,预测
  12. os.system('sh /data/rov-offline/rov_train_recall_pool_update.sh')
  13. # 将日志上传到oss
  14. log_cmd = "ossutil cp -r -f {} oss://{}/{}".format(log_.logname, config_.BUCKET_NAME, config_.OSS_FOLDER_LOGS)
  15. os.system(log_cmd)
  16. # 将data上传到oss
  17. data_cmd = "ossutil cp -r -f {} oss://{}/{}".format("/data/rov-offline/data",
  18. config_.BUCKET_NAME, config_.OSS_FOLDER_DATA)
  19. os.system(data_cmd)
  20. def data_check(project, table, date):
  21. odps = ODPS(
  22. access_id='LTAI4FtW5ZzxMvdw35aNkmcp',
  23. secret_access_key='0VKnydcaHK3ITjylbgUsLubX6rwiwc',
  24. project=project,
  25. endpoint='http://service.cn.maxcompute.aliyun.com/api',
  26. connect_timeout=3000,
  27. read_timeout=500000,
  28. pool_maxsize=1000,
  29. pool_connections=1000
  30. )
  31. try:
  32. sql = "select * from {}.{} where dt = {}".format(project, table, date)
  33. with odps.execute_sql(sql=sql).open_reader() as reader:
  34. feature_count = reader.count
  35. except Exception as e:
  36. feature_count = 0
  37. return feature_count
  38. def timer_check():
  39. # 当前日期
  40. now_date = datetime.datetime.today()
  41. # 训练数据 最近日期分区
  42. train_dt = now_date - datetime.timedelta(days=config_.TRAIN_DIFF)
  43. train_date = dt.strftime(train_dt, '%Y%m%d')
  44. # 预测数据 最近日期分区
  45. predict_dt = now_date - datetime.timedelta(days=config_.PREDICT_DIFF)
  46. predict_date = dt.strftime(predict_dt, '%Y%m%d')
  47. # 查看训练数据特征是否准备好
  48. train_feature_count = data_check(config_.TRAIN_PROJECT, config_.TRAIN_TABLE, train_date)
  49. # 查看训练数据特征是否准备好
  50. predict_feature_count = data_check(config_.PREDICT_PROJECT, config_.PREDICT_TABLE, predict_date)
  51. # 数据未准备好,1分钟后重新检查
  52. if train_feature_count == 0 or predict_feature_count == 0:
  53. # 数据未准备好,1分钟后重新检查
  54. Timer(60, timer_check).start()
  55. else:
  56. # 数据准备好,更新模型,预测
  57. rov_train_recall_pool_update()
  58. if __name__ == '__main__':
  59. timer_check()