pool_predict.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121
  1. import time
  2. import os
  3. from config import set_config
  4. from utils import request_post, filter_video_status
  5. from log import Log
  6. from db_helper import RedisHelper
  7. config_ = set_config()
  8. log_ = Log()
  9. def get_videos_from_flow_pool(app_type, size=1000):
  10. """
  11. 从流量池获取视频,循环获取,直到返回数据为None结束
  12. :param app_type: 产品标识 type-int
  13. :param size: 每次获取视频数量,type-int,默认1000
  14. :return: videos [{'videoId': 1111, 'flowPool': ''}, ...]
  15. """
  16. # 获取批次标识,利用首次获取数据时间戳为标记
  17. batch_flag = time.time()
  18. request_data = {'appType': app_type, 'batchFlag': batch_flag, 'size': size}
  19. videos = []
  20. while True:
  21. result = request_post(request_url=config_.GET_VIDEOS_FROM_POOL_URL, request_data=request_data)
  22. if result is None:
  23. break
  24. if result['code'] != 0:
  25. log_.info('batch_flag: {}, 获取流量池视频失败'.format(batch_flag))
  26. break
  27. videos.append(result['data'])
  28. return videos
  29. def get_videos_remain_view_count(app_type, videos_info):
  30. """
  31. 获取视频在流量池中的剩余可分发数
  32. :param app_type: 产品标识 type-int
  33. :param videos_info: 视频信息 (视频id, 流量池标记) type-list,[(video_id, flow_pool), ...]
  34. :return: data type-list,[(video_id, flow_pool, view_count), ...]
  35. """
  36. if not videos_info:
  37. return []
  38. videos = [{'videoId': info[0], 'flowPool': info[1]} for info in videos_info]
  39. request_data = {'appType': app_type, 'videos': videos}
  40. result = request_post(request_url=config_.GET_REMAIN_VIEW_COUNT_URL, request_data=request_data)
  41. if result is None:
  42. return []
  43. if result['code'] != 0:
  44. log_.info('获取视频在流量池中的剩余可分发数失败')
  45. return []
  46. data = [(item['videoId'], item['flowPool'], item['viewCount']) for item in result['data']]
  47. return data
  48. def get_score(video_ids):
  49. return [1] * len(video_ids)
  50. def predict(app_type):
  51. """
  52. 对流量池视频排序,并将结果上传Redis
  53. :param app_type: 产品标识 type-int
  54. :return: None
  55. """
  56. # 从流量池获取数据
  57. videos = get_videos_from_flow_pool(app_type=app_type)
  58. if len(videos) <= 0:
  59. log_.info('流量池中无需分发的视频')
  60. return None
  61. # video_id 与 flow_pool 进行mapping
  62. video_ids = set()
  63. log_.info('流量池中视频数:{}'.format(len(video_ids)))
  64. mapping = {}
  65. for video in videos:
  66. video_ids.add(video['videoId'])
  67. mapping[video['videoId']] = video['flowPool']
  68. # 对视频状态进行过滤
  69. filtered_videos = filter_video_status(list(video_ids))
  70. log_.info('filter videos status finished, filtered_videos nums={}'.format(len(filtered_videos)))
  71. if not filtered_videos:
  72. log_.info('流量池中视频状态不符合分发')
  73. return None
  74. # 预测
  75. video_score = get_score(filtered_videos)
  76. log_.info('predict finished!')
  77. # 上传数据到redis
  78. redis_data = {}
  79. for i in range(len(video_score)):
  80. video_id = filtered_videos[i]
  81. score = video_score[i]
  82. for flow_pool in mapping.get(video_id):
  83. value = '{}-{}'.format(video_id, flow_pool)
  84. redis_data[value] = score
  85. key_name = config_.FLOWPOOL_KEY_NAME_PREFIX + str(app_type)
  86. redis_helper = RedisHelper()
  87. # 如果key已存在,删除key
  88. if redis_helper.key_exists(key_name):
  89. redis_helper.del_keys(key_name)
  90. # 写入redis
  91. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=24 * 3600)
  92. log_.info('data to redis finished!')
  93. if __name__ == '__main__':
  94. # res = get_videos_from_pool(app_type=0)
  95. # res = get_videos_remain_view_count(app_type=0, videos_info=[('12345', '#2#1#111')])
  96. # print(res)
  97. log_.info('flow pool predict start...')
  98. for app_name, app_type in config_.APP_TYPE.items():
  99. log_.info('{} predict start...'.format(app_name))
  100. predict(app_type=app_type)
  101. log_.info('{} predict end...'.format(app_name))
  102. log_.info('flow pool predict end...')
  103. # 将日志上传到oss
  104. log_cmd = "ossutil cp -r -f {} oss://{}/{}".format(log_.logname, config_.BUCKET_NAME, config_.OSS_FOLDER_LOGS)
  105. os.system(log_cmd)