12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- import sys
- import traceback
- import pandas as pd
- from db_helper import RedisHelper
- from my_utils import send_msg_to_feishu
- from my_config import set_config
- from log import Log
- config_, _ = set_config()
- log_ = Log()
- redis_helper = RedisHelper()
- def cal_compose_score(score_hour_path, score_24h_path, merge_score_path):
- """分值合并"""
- score_hour_df = pd.read_csv(score_hour_path)
- score_24h_df = pd.read_csv(score_24h_path)
- # print(score_hour_df)
- # print(score_24h_df)
- score_hour_df['videoid'] = score_hour_df['videoid'].astype(int)
- score_24h_df['videoid'] = score_24h_df['videoid'].astype(int)
- score_merge_df = pd.merge(score_hour_df, score_24h_df, on='videoid', how='outer')
- score_merge_df.fillna(0, inplace=True)
- # print(score_merge_df)
- log_.info(f"score_hour_df shape: {score_hour_df.shape}")
- log_.info(f"score_24h_df shape: {score_24h_df.shape}")
- log_.info(f"score_merge_df shape: {score_merge_df.shape}")
- score_merge_df['score1'] = score_merge_df['24h_score1'] + score_merge_df['hour_score1']
- # score_merge_df['score2'] = score_merge_df['24h_score1'] + score_merge_df['hour_score2']
- # score_merge_df['score3'] = score_merge_df['24h_score1'] + score_merge_df['hour_score3']
- score_merge_df['score4'] = score_merge_df['24h_score1'] + score_merge_df['hour_score4']
- # score_merge_df['score5'] = score_merge_df['24h_score1'] + score_merge_df['hour_score5']
- score_merge_df['score6'] = score_merge_df['24h_score1'] * 0.2 + score_merge_df['hour_score4'] * 0.8
- score_merge_df['score7'] = score_merge_df['24h_score2'] + score_merge_df['hour_score4']
- score_merge_df['score8'] = score_merge_df['24h_score1'] + score_merge_df['hour_score6']
- # print(score_merge_df)
- log_.info(f"score_merge_df shape: {score_merge_df.shape}")
- score_merge_df.to_csv(merge_score_path, index=False)
- score_df = score_merge_df[['videoid', 'score1', 'score4', 'score6', 'score7', 'score8']]
- log_.info(f"score_df shape: {score_merge_df.shape}")
- return score_df
- def score_to_redis(score_df):
- redis_data = dict()
- rank_score_key_prefix = 'rank:'
- score_name_list = score_df.columns.to_list()[1:]
- for ind, row in score_df.iterrows():
- if ind % 1000 == 0:
- if len(redis_data) > 0:
- print(ind, len(redis_data))
- redis_helper.update_batch_set_key(data=redis_data, expire_time=24*60*60)
- redis_data = {}
- video_id = int(row['videoid'])
- for score_name in score_name_list:
- score = row[score_name]
- rank_score_key = f"{rank_score_key_prefix}{score_name}:{video_id}"
- redis_data[rank_score_key] = score
- # print(rank_score_key, score)
- # redis_helper.set_data_to_redis(key_name=rank_score_key, value=score, expire_time=24*60*60)
- if len(redis_data) > 0:
- print(len(redis_data))
- redis_helper.update_batch_set_key(data=redis_data, expire_time=24 * 60 * 60)
- if __name__ == '__main__':
- try:
- now_date = sys.argv[1]
- log_.info(f"now date: {now_date}")
- score_hour_path = f"./data/hour_score_{now_date}.csv"
- score_24h_path = f"./data/24h_score_{now_date}.csv"
- merge_score_path = f"./data/merge_score_{now_date}.csv"
- score_df = cal_compose_score(
- score_hour_path=score_hour_path, score_24h_path=score_24h_path, merge_score_path=merge_score_path
- )
- score_to_redis(score_df=score_df)
- log_.info("rank score update finished!")
- except Exception as e:
- log_.error(f"rank 分值合并更新失败, exception: {e}, traceback: {traceback.format_exc()}")
- send_msg_to_feishu(
- webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
- key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
- msg_text=f"rov-offline{config_.ENV_TEXT} - rank 分值合并更新失败\n"
- f"exception: {e}\n"
- f"traceback: {traceback.format_exc()}"
- )
|