pool_predict.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. import time
  2. from config import set_config
  3. from utils import request_post, filter_video_status
  4. from log import Log
  5. from db_helper import RedisHelper
  6. config_ = set_config()
  7. log_ = Log()
  8. def get_videos_from_flow_pool(app_type, size=1000):
  9. """
  10. 从流量池获取视频,循环获取,直到返回数据为None结束
  11. :param app_type: 产品标识 type-int
  12. :param size: 每次获取视频数量,type-int,默认1000
  13. :return: videos [{'videoId': 1111, 'flowPool': ''}, ...]
  14. """
  15. # 获取批次标识,利用首次获取数据时间戳为标记
  16. batch_flag = time.time()
  17. request_data = {'appType': app_type, 'batchFlag': batch_flag, 'size': size}
  18. videos = []
  19. while True:
  20. result = request_post(request_url=config_.GET_VIDEOS_FROM_POOL_URL, request_data=request_data)
  21. if result is None:
  22. break
  23. if result['code'] != 0:
  24. log_.info('batch_flag: {}, 获取流量池视频失败'.format(batch_flag))
  25. break
  26. videos.append(result['data'])
  27. return videos
  28. def get_videos_remain_view_count(app_type, videos_info):
  29. """
  30. 获取视频在流量池中的剩余可分发数
  31. :param app_type: 产品标识 type-int
  32. :param videos_info: 视频信息 (视频id, 流量池标记) type-list,[(video_id, flow_pool), ...]
  33. :return: data type-list,[(video_id, flow_pool, view_count), ...]
  34. """
  35. if not videos_info:
  36. return []
  37. videos = [{'videoId': info[0], 'flowPool': info[1]} for info in videos_info]
  38. request_data = {'appType': app_type, 'videos': videos}
  39. result = request_post(request_url=config_.GET_REMAIN_VIEW_COUNT_URL, request_data=request_data)
  40. if result is None:
  41. return []
  42. if result['code'] != 0:
  43. log_.info('获取视频在流量池中的剩余可分发数失败')
  44. return []
  45. data = [(item['videoId'], item['flowPool'], item['viewCount']) for item in result['data']]
  46. return data
  47. def get_score(video_ids):
  48. return [1] * len(video_ids)
  49. def predict():
  50. """
  51. 对流量池视频排序,并将结果上传Redis
  52. :return: None
  53. """
  54. # 从流量池获取数据
  55. videos = get_videos_from_flow_pool(app_type=config_.APP_TYPE['VLOG'])
  56. if len(videos) <= 0:
  57. log_.info('流量池中无需分发的视频')
  58. return None
  59. # video_id 与 flow_pool 进行mapping
  60. video_ids = set()
  61. log_.info('流量池中视频数:{}'.format(len(video_ids)))
  62. mapping = {}
  63. for video in videos:
  64. video_ids.add(video['videoId'])
  65. mapping[video['videoId']] = video['flowPool']
  66. # 对视频状态进行过滤
  67. filtered_videos = filter_video_status(list(video_ids))
  68. log_.info('filter videos status finished, filtered_videos nums={}'.format(len(filtered_videos)))
  69. if not filtered_videos:
  70. log_.info('流量池中视频状态不符合分发')
  71. return None
  72. # 预测
  73. video_score = get_score(filtered_videos)
  74. log_.info('predict finished!')
  75. # 上传数据到redis
  76. redis_data = {}
  77. for i in range(len(video_score)):
  78. video_id = filtered_videos[i]
  79. score = video_score[i]
  80. for flow_pool in mapping.get(video_id):
  81. value = '{}-{}'.format(video_id, flow_pool)
  82. redis_data[value] = score
  83. key_name = config_.FLOWPOOL_KEY_NAME
  84. redis_helper = RedisHelper()
  85. # 如果key已存在,删除key
  86. if redis_helper.key_exists(key_name):
  87. redis_helper.del_keys(key_name)
  88. # 写入redis
  89. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=24 * 3600)
  90. log_.info('data to redis finished!')
  91. if __name__ == '__main__':
  92. # res = get_videos_from_pool(app_type=0)
  93. # res = get_videos_remain_view_count(app_type=0, videos_info=[('12345', '#2#1#111')])
  94. # print(res)
  95. log_.info('flow pool predict start...')
  96. predict()
  97. log_.info('flow pool predict end...')