region_rule_rank_h.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390
  1. # -*- coding: utf-8 -*-
  2. # @ModuleName: region_rule_rank_h
  3. # @Author: Liqian
  4. # @Time: 2022/5/5 15:54
  5. # @Software: PyCharm
  6. import datetime
  7. import pandas as pd
  8. import math
  9. from odps import ODPS
  10. from threading import Timer
  11. from utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status
  12. from config import set_config
  13. from log import Log
  14. from check_video_limit_distribute import update_limit_video_score
  15. config_, _ = set_config()
  16. log_ = Log()
  17. region_code = config_.REGION_CODE
  18. features = [
  19. 'code',
  20. 'videoid',
  21. 'lastonehour_preview', # 过去1小时预曝光人数
  22. 'lastonehour_view', # 过去1小时曝光人数
  23. 'lastonehour_play', # 过去1小时播放人数
  24. 'lastonehour_share', # 过去1小时分享人数
  25. 'lastonehour_return', # 过去1小时分享,过去1小时回流人数
  26. 'lastonehour_preview_total', # 过去1小时预曝光次数
  27. 'lastonehour_view_total', # 过去1小时曝光次数
  28. 'lastonehour_play_total', # 过去1小时播放次数
  29. 'lastonehour_share_total', # 过去1小时分享次数
  30. 'platform_return',
  31. 'lastonehour_show', # 不区分地域
  32. 'lastonehour_show_region', # 地域分组
  33. ]
  34. def get_region_code(region):
  35. """获取省份对应的code"""
  36. mysql_helper = MysqlHelper(mysql_info=config_.MYSQL_INFO)
  37. sql = f"SELECT ad_code FROM region_adcode WHERE parent_id = 0 AND region LIKE '{region}%';"
  38. ad_code = mysql_helper.get_data(sql=sql)
  39. return ad_code[0][0]
  40. def h_data_check(project, table, now_date):
  41. """检查数据是否准备好"""
  42. odps = ODPS(
  43. access_id=config_.ODPS_CONFIG['ACCESSID'],
  44. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  45. project=project,
  46. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  47. connect_timeout=3000,
  48. read_timeout=500000,
  49. pool_maxsize=1000,
  50. pool_connections=1000
  51. )
  52. try:
  53. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  54. sql = f'select * from {project}.{table} where dt = {dt}'
  55. with odps.execute_sql(sql=sql).open_reader() as reader:
  56. data_count = reader.count
  57. except Exception as e:
  58. data_count = 0
  59. return data_count
  60. def get_rov_redis_key(now_date):
  61. """获取rov模型结果存放key"""
  62. redis_helper = RedisHelper()
  63. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  64. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  65. if not redis_helper.key_exists(key_name=key_name):
  66. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  67. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  68. return key_name
  69. def get_feature_data(project, table, now_date):
  70. """获取特征数据"""
  71. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  72. # dt = '2022041310'
  73. records = get_data_from_odps(date=dt, project=project, table=table)
  74. feature_data = []
  75. for record in records:
  76. item = {}
  77. for feature_name in features:
  78. item[feature_name] = record[feature_name]
  79. feature_data.append(item)
  80. feature_df = pd.DataFrame(feature_data)
  81. return feature_df
  82. def cal_score(df, param):
  83. """
  84. 计算score
  85. :param df: 特征数据
  86. :param param: 规则参数
  87. :return:
  88. """
  89. # score计算公式: sharerate*backrate*logback*ctr
  90. # sharerate = lastonehour_share/(lastonehour_play+1000)
  91. # backrate = lastonehour_return/(lastonehour_share+10)
  92. # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  93. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  94. df = df.fillna(0)
  95. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  96. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  97. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  98. if param.get('view_type', None) == 'video-show':
  99. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  100. elif param.get('view_type', None) == 'video-show-region':
  101. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  102. else:
  103. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  104. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  105. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  106. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  107. df = df.sort_values(by=['score'], ascending=False)
  108. return df
  109. def video_rank(df, now_date, now_h, rule_key, param, region):
  110. """
  111. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  112. :param df:
  113. :param now_date:
  114. :param now_h:
  115. :param rule_key: 小时级数据进入条件
  116. :param param: 小时级数据进入条件参数
  117. :param region: 所属地域
  118. :return:
  119. """
  120. redis_helper = RedisHelper()
  121. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  122. return_count = param.get('return_count', 1)
  123. score_value = param.get('score_rule', 0)
  124. platform_return_rate = param.get('platform_return_rate', 0)
  125. h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
  126. & (df['platform_return_rate'] >= platform_return_rate)]
  127. # videoid重复时,保留分值高
  128. h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
  129. h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  130. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  131. h_recall_videos = h_recall_df['videoid'].to_list()
  132. log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  133. # 视频状态过滤
  134. filtered_videos = filter_video_status(h_recall_videos)
  135. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  136. # 写入对应的redis
  137. h_video_ids = []
  138. h_recall_result = {}
  139. for video_id in filtered_videos:
  140. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  141. # print(score)
  142. h_recall_result[int(video_id)] = float(score)
  143. h_video_ids.append(int(video_id))
  144. h_recall_key_name = \
  145. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  146. if len(h_recall_result) > 0:
  147. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=23 * 3600)
  148. # 限流视频score调整
  149. update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name)
  150. # 清空线上过滤应用列表
  151. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{rule_key}")
  152. region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
  153. # 与其他召回视频池去重,存入对应的redis
  154. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key,
  155. region_24h_rule_key=region_24h_rule_key, region=region)
  156. def dup_to_redis(h_video_ids, now_date, now_h, rule_key, region_24h_rule_key, region):
  157. """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
  158. redis_helper = RedisHelper()
  159. # # ##### 去重更新地域分组天级列表,并另存为redis中
  160. # region_day_key_name = \
  161. # f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_DAY}{region}.rule1." \
  162. # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}"
  163. # if redis_helper.key_exists(key_name=region_day_key_name):
  164. # region_day_data = redis_helper.get_data_zset_with_index(
  165. # key_name=region_day_key_name, start=0, end=-1, with_scores=True)
  166. # log_.info(f'region day data count = {len(region_day_data)}')
  167. # region_day_dup = {}
  168. # for video_id, score in region_day_data:
  169. # if int(video_id) not in h_video_ids:
  170. # region_day_dup[int(video_id)] = score
  171. # h_video_ids.append(int(video_id))
  172. # log_.info(f"region day data dup count = {len(region_day_dup)}")
  173. # region_day_dup_key_name = \
  174. # f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_DAY_H}{region}.{rule_key}." \
  175. # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  176. # if len(region_day_dup) > 0:
  177. # redis_helper.add_data_with_zset(key_name=region_day_dup_key_name, data=region_day_dup, expire_time=23 * 3600)
  178. # ##### 去重更新地域分组小时级24h列表,并另存为redis中
  179. region_24h_key_name = \
  180. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}.{region_24h_rule_key}." \
  181. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  182. if redis_helper.key_exists(key_name=region_24h_key_name):
  183. region_24h_data = redis_helper.get_all_data_from_zset(key_name=region_24h_key_name, with_scores=True)
  184. log_.info(f'region 24h data count = {len(region_24h_data)}')
  185. region_24h_dup = {}
  186. for video_id, score in region_24h_data:
  187. if int(video_id) not in h_video_ids:
  188. region_24h_dup[int(video_id)] = score
  189. h_video_ids.append(int(video_id))
  190. log_.info(f"region 24h data dup count = {len(region_24h_dup)}")
  191. region_24h_dup_key_name = \
  192. f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}.{rule_key}." \
  193. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  194. if len(region_24h_dup) > 0:
  195. redis_helper.add_data_with_zset(key_name=region_24h_dup_key_name, data=region_24h_dup, expire_time=23 * 3600)
  196. # 限流视频score调整
  197. update_limit_video_score(initial_videos=region_24h_dup, key_name=region_24h_dup_key_name)
  198. # 清空线上过滤应用列表
  199. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{region}.{rule_key}")
  200. # ##### 去重小程序天级更新结果,并另存为redis中
  201. # day_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_DAY}rule2.{datetime.datetime.strftime(now_date, '%Y%m%d')}"
  202. # if redis_helper.key_exists(key_name=day_key_name):
  203. # day_data = redis_helper.get_data_zset_with_index(
  204. # key_name=day_key_name, start=0, end=-1, with_scores=True)
  205. # log_.info(f'day data count = {len(day_data)}')
  206. # day_dup = {}
  207. # for video_id, score in day_data:
  208. # if int(video_id) not in h_video_ids:
  209. # day_dup[int(video_id)] = score
  210. # h_video_ids.append(int(video_id))
  211. # log_.info(f"day data dup count = {len(day_dup)}")
  212. # day_dup_key_name = \
  213. # f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_DAY_H}{region}.{rule_key}." \
  214. # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  215. # if len(day_dup) > 0:
  216. # redis_helper.add_data_with_zset(key_name=day_dup_key_name, data=day_dup, expire_time=23 * 3600)
  217. # ##### 去重小程序相对24h更新结果,并另存为redis中
  218. day_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}rule2." \
  219. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  220. if redis_helper.key_exists(key_name=day_key_name):
  221. day_data = redis_helper.get_all_data_from_zset(key_name=day_key_name, with_scores=True)
  222. log_.info(f'24h data count = {len(day_data)}')
  223. day_dup = {}
  224. for video_id, score in day_data:
  225. if int(video_id) not in h_video_ids:
  226. day_dup[int(video_id)] = score
  227. h_video_ids.append(int(video_id))
  228. log_.info(f"24h data dup count = {len(day_dup)}")
  229. day_dup_key_name = \
  230. f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}.{rule_key}." \
  231. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  232. if len(day_dup) > 0:
  233. redis_helper.add_data_with_zset(key_name=day_dup_key_name, data=day_dup, expire_time=23 * 3600)
  234. # 限流视频score调整
  235. update_limit_video_score(initial_videos=day_dup, key_name=day_dup_key_name)
  236. # 清空线上过滤应用列表
  237. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{region}.{rule_key}")
  238. # ##### 去重小程序模型更新结果,并另存为redis中
  239. model_key_name = get_rov_redis_key(now_date=now_date)
  240. model_data = redis_helper.get_all_data_from_zset(key_name=model_key_name, with_scores=True)
  241. log_.info(f'model data count = {len(model_data)}')
  242. model_data_dup = {}
  243. for video_id, score in model_data:
  244. if int(video_id) not in h_video_ids:
  245. model_data_dup[int(video_id)] = score
  246. h_video_ids.append(int(video_id))
  247. log_.info(f"model data dup count = {len(model_data_dup)}")
  248. model_data_dup_key_name = \
  249. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H}{region}.{rule_key}." \
  250. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  251. if len(model_data_dup) > 0:
  252. redis_helper.add_data_with_zset(key_name=model_data_dup_key_name, data=model_data_dup, expire_time=23 * 3600)
  253. # 限流视频score调整
  254. update_limit_video_score(initial_videos=model_data_dup, key_name=model_data_dup_key_name)
  255. def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list):
  256. # 获取特征数据
  257. feature_df = get_feature_data(project=project, table=table, now_date=now_date)
  258. # 获取所有的region
  259. # region_code_list = list(set(feature_df[''].to_list()))
  260. # rank
  261. for key, value in rule_params.items():
  262. log_.info(f"rule = {key}, param = {value}")
  263. for region in region_code_list:
  264. log_.info(f"region = {region}")
  265. # 计算score
  266. region_df = feature_df[feature_df['code'] == region]
  267. log_.info(f'region_df count = {len(region_df)}')
  268. score_df = cal_score(df=region_df, param=value)
  269. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
  270. # to-csv
  271. score_filename = f"score_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  272. score_df.to_csv(f'./data/{score_filename}')
  273. # to-logs
  274. log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
  275. "region_code": region,
  276. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,
  277. "rule_key": key,
  278. # "score_df": score_df[['videoid', 'score']]
  279. }
  280. )
  281. def h_rank_bottom(now_date, now_h, rule_key, region_code_list, param):
  282. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  283. log_.info(f"rule_key = {rule_key}")
  284. region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
  285. # 获取rov模型结果
  286. redis_helper = RedisHelper()
  287. if now_h == 0:
  288. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  289. redis_h = 23
  290. else:
  291. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  292. redis_h = now_h - 1
  293. # key_prefix_list = [
  294. # config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,
  295. # config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_DAY_H,
  296. # config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_DAY_H,
  297. # config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H
  298. # ]
  299. # fea_df = get_feature_data(project=project, table=table, now_date=now_date - datetime.timedelta(hours=1))
  300. # region_list = list(set(fea_df[''].to_list()))
  301. # 以上一小时的地域分组数据作为当前小时的数据
  302. key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H
  303. for region in region_code_list:
  304. log_.info(f"region = {region}")
  305. key_name = f"{key_prefix}{region}.{rule_key}.{redis_dt}.{redis_h}"
  306. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  307. if initial_data is None:
  308. initial_data = []
  309. final_data = dict()
  310. h_video_ids = []
  311. for video_id, score in initial_data:
  312. final_data[video_id] = score
  313. h_video_ids.append(int(video_id))
  314. # 存入对应的redis
  315. final_key_name = \
  316. f"{key_prefix}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  317. if len(final_data) > 0:
  318. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  319. # 清空线上过滤应用列表
  320. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{rule_key}")
  321. # 与其他召回视频池去重,存入对应的redis
  322. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h,
  323. rule_key=rule_key, region_24h_rule_key=region_24h_rule_key, region=region)
  324. def h_timer_check():
  325. rule_params = config_.RULE_PARAMS_REGION
  326. project = config_.PROJECT_REGION
  327. table = config_.TABLE_REGION
  328. region_code_list = [code for region, code in region_code.items()]
  329. now_date = datetime.datetime.today()
  330. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  331. now_h = datetime.datetime.now().hour
  332. now_min = datetime.datetime.now().minute
  333. if now_h == 0:
  334. for key, value in rule_params.items():
  335. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key, region_code_list=region_code_list, param=value)
  336. return
  337. # 查看当前小时更新的数据是否已准备好
  338. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  339. if h_data_count > 0:
  340. log_.info(f'h_data_count = {h_data_count}')
  341. # 数据准备好,进行更新
  342. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
  343. project=project, table=table, region_code_list=region_code_list)
  344. elif now_min > 50:
  345. log_.info('h_recall data is None, use bottom data!')
  346. for key, value in rule_params.items():
  347. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key, region_code_list=region_code_list, param=value)
  348. else:
  349. # 数据没准备好,1分钟后重新检查
  350. Timer(60, h_timer_check).start()
  351. if __name__ == '__main__':
  352. h_timer_check()