region_rule_rank_h_by24h.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. # -*- coding: utf-8 -*-
  2. # @ModuleName: region_rule_rank_h
  3. # @Author: Liqian
  4. # @Time: 2022/5/5 15:54
  5. # @Software: PyCharm
  6. import datetime
  7. import pandas as pd
  8. import math
  9. from odps import ODPS
  10. from threading import Timer
  11. from utils import RedisHelper, get_data_from_odps, filter_video_status
  12. from config import set_config
  13. from log import Log
  14. config_, _ = set_config()
  15. log_ = Log()
  16. region_code = {
  17. '河北省': '130000',
  18. '山西省': '140000',
  19. '辽宁省': '210000',
  20. '吉林省': '220000',
  21. '黑龙江省': '230000',
  22. '江苏省': '320000',
  23. '浙江省': '330000',
  24. '安徽省': '340000',
  25. '福建省': '350000',
  26. '江西省': '360000',
  27. '山东省': '370000',
  28. '河南省': '410000',
  29. '湖北省': '420000',
  30. '湖南省': '430000',
  31. '广东省': '440000',
  32. '海南省': '460000',
  33. '四川省': '510000',
  34. '贵州省': '520000',
  35. '云南省': '530000',
  36. '陕西省': '610000',
  37. '甘肃省': '620000',
  38. '青海省': '630000',
  39. '台湾省': '710000',
  40. '北京': '110000',
  41. '天津': '120000',
  42. '内蒙古': '150000',
  43. '上海': '310000',
  44. '广西': '450000',
  45. '重庆': '500000',
  46. '西藏': '540000',
  47. '宁夏': '640000',
  48. '新疆': '650000',
  49. '香港': '810000',
  50. '澳门': '820000',
  51. }
  52. features = [
  53. 'code', # 省份编码
  54. 'videoid',
  55. 'lastday_preview', # 昨日预曝光人数
  56. 'lastday_view', # 昨日曝光人数
  57. 'lastday_play', # 昨日播放人数
  58. 'lastday_share', # 昨日分享人数
  59. 'lastday_return', # 昨日回流人数
  60. 'lastday_preview_total', # 昨日预曝光次数
  61. 'lastday_view_total', # 昨日曝光次数
  62. 'lastday_play_total', # 昨日播放次数
  63. 'lastday_share_total', # 昨日分享次数
  64. ]
  65. def get_rov_redis_key(now_date):
  66. """获取rov模型结果存放key"""
  67. redis_helper = RedisHelper()
  68. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  69. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  70. if not redis_helper.key_exists(key_name=key_name):
  71. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  72. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  73. return key_name
  74. def data_check(project, table, now_date):
  75. """检查数据是否准备好"""
  76. odps = ODPS(
  77. access_id=config_.ODPS_CONFIG['ACCESSID'],
  78. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  79. project=project,
  80. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  81. connect_timeout=3000,
  82. read_timeout=500000,
  83. pool_maxsize=1000,
  84. pool_connections=1000
  85. )
  86. try:
  87. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  88. sql = f'select * from {project}.{table} where dt = {dt}'
  89. with odps.execute_sql(sql=sql).open_reader() as reader:
  90. data_count = reader.count
  91. except Exception as e:
  92. data_count = 0
  93. return data_count
  94. def get_feature_data(project, table, now_date):
  95. """获取特征数据"""
  96. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  97. # dt = '2022041310'
  98. records = get_data_from_odps(date=dt, project=project, table=table)
  99. feature_data = []
  100. for record in records:
  101. item = {}
  102. for feature_name in features:
  103. item[feature_name] = record[feature_name]
  104. feature_data.append(item)
  105. feature_df = pd.DataFrame(feature_data)
  106. return feature_df
  107. def cal_score(df):
  108. """
  109. 计算score
  110. :param df: 特征数据
  111. :return:
  112. """
  113. # score计算公式: sharerate*backrate*logback*ctr
  114. # sharerate = lastday_share/(lastday_play+1000)
  115. # backrate = lastday_return/(lastday_share+10)
  116. # ctr = lastday_play/(lastday_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  117. # score = sharerate * backrate * LOG(lastday_return+1) * K2
  118. df = df.fillna(0)
  119. df['share_rate'] = df['lastday_share'] / (df['lastday_play'] + 1000)
  120. df['back_rate'] = df['lastday_return'] / (df['lastday_share'] + 10)
  121. df['log_back'] = (df['lastday_return'] + 1).apply(math.log)
  122. df['ctr'] = df['lastday_play'] / (df['lastday_preview'] + 1000)
  123. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  124. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  125. df = df.sort_values(by=['score'], ascending=False)
  126. return df
  127. def video_rank(df, now_date, now_h, rule_key, param, region):
  128. """
  129. 获取符合进入召回源条件的视频
  130. :param df:
  131. :param now_date:
  132. :param now_h:
  133. :param rule_key: 小时级数据进入条件
  134. :param param: 小时级数据进入条件参数
  135. :param region: 所属地域
  136. :return:
  137. """
  138. redis_helper = RedisHelper()
  139. # 获取符合进入召回源条件的视频
  140. return_count = param.get('return_count', 1)
  141. score_value = param.get('score_rule', 0)
  142. h_recall_df = df[(df['lastday_return'] >= return_count) & (df['score'] >= score_value)]
  143. # videoid重复时,保留分值高
  144. h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
  145. h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  146. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  147. h_recall_videos = h_recall_df['videoid'].to_list()
  148. log_.info(f'day_recall videos count = {len(h_recall_videos)}')
  149. # 视频状态过滤
  150. filtered_videos = filter_video_status(h_recall_videos)
  151. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  152. # 写入对应的redis
  153. h_video_ids = []
  154. day_recall_result = {}
  155. for video_id in filtered_videos:
  156. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  157. # print(score)
  158. day_recall_result[int(video_id)] = float(score)
  159. h_video_ids.append(int(video_id))
  160. day_recall_key_name = \
  161. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}.{rule_key}." \
  162. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  163. if len(day_recall_result) > 0:
  164. redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=23 * 3600)
  165. # 清空线上过滤应用列表
  166. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{region}.{rule_key}")
  167. # 与其他召回视频池去重,存入对应的redis
  168. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
  169. def rank_by_24h(project, table, now_date, now_h, rule_params, region_code_list):
  170. # 获取特征数据
  171. feature_df = get_feature_data(project=project, table=table, now_date=now_date)
  172. # rank
  173. for key, value in rule_params.items():
  174. log_.info(f"rule = {key}, param = {value}")
  175. for region in region_code_list:
  176. log_.info(f"region = {region}")
  177. # 计算score
  178. region_df = feature_df[feature_df['code'] == region]
  179. log_.info(f'region_df count = {len(region_df)}')
  180. score_df = cal_score(df=region_df)
  181. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
  182. # to-csv
  183. score_filename = f"score_24h_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  184. score_df.to_csv(f'./data/{score_filename}')
  185. # to-logs
  186. log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
  187. "region_code": region,
  188. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H,
  189. "rule_key": key,
  190. "score_df": score_df[['videoid', 'score']]})
  191. def dup_to_redis(h_video_ids, now_date, now_h, rule_key, region):
  192. """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
  193. redis_helper = RedisHelper()
  194. # ##### 去重小程序天级更新结果,并另存为redis中
  195. day_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_DAY}rule2.{datetime.datetime.strftime(now_date, '%Y%m%d')}"
  196. if redis_helper.key_exists(key_name=day_key_name):
  197. day_data = redis_helper.get_data_zset_with_index(
  198. key_name=day_key_name, start=0, end=-1, with_scores=True)
  199. log_.info(f'day data count = {len(day_data)}')
  200. day_dup = {}
  201. for video_id, score in day_data:
  202. if int(video_id) not in h_video_ids:
  203. day_dup[int(video_id)] = score
  204. h_video_ids.append(int(video_id))
  205. log_.info(f"day data dup count = {len(day_dup)}")
  206. day_dup_key_name = \
  207. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_DAY_24H}{region}.{rule_key}." \
  208. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  209. if len(day_dup) > 0:
  210. redis_helper.add_data_with_zset(key_name=day_dup_key_name, data=day_dup, expire_time=23 * 3600)
  211. # ##### 去重小程序模型更新结果,并另存为redis中
  212. model_key_name = get_rov_redis_key(now_date=now_date)
  213. model_data = redis_helper.get_data_zset_with_index(key_name=model_key_name, start=0, end=-1, with_scores=True)
  214. log_.info(f'model data count = {len(model_data)}')
  215. model_data_dup = {}
  216. for video_id, score in model_data:
  217. if int(video_id) not in h_video_ids:
  218. model_data_dup[int(video_id)] = score
  219. h_video_ids.append(int(video_id))
  220. log_.info(f"model data dup count = {len(model_data_dup)}")
  221. model_data_dup_key_name = \
  222. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_24H}{region}.{rule_key}." \
  223. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  224. if len(model_data_dup) > 0:
  225. redis_helper.add_data_with_zset(key_name=model_data_dup_key_name, data=model_data_dup, expire_time=23 * 3600)
  226. def h_rank_bottom(now_date, now_h, rule_key, region_code_list):
  227. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  228. log_.info(f"rule_key = {rule_key}")
  229. # 获取rov模型结果
  230. redis_helper = RedisHelper()
  231. if now_h == 0:
  232. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  233. redis_h = 23
  234. else:
  235. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  236. redis_h = now_h - 1
  237. # 以上一小时的地域分组数据作为当前小时的数据
  238. key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H
  239. for region in region_code_list:
  240. log_.info(f"region = {region}")
  241. key_name = f"{key_prefix}{region}.{rule_key}.{redis_dt}.{redis_h}"
  242. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  243. final_data = dict()
  244. h_video_ids = []
  245. for video_id, score in initial_data:
  246. final_data[video_id] = score
  247. h_video_ids.append(int(video_id))
  248. # 存入对应的redis
  249. final_key_name = \
  250. f"{key_prefix}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  251. if len(final_data) > 0:
  252. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  253. # 清空线上过滤应用列表
  254. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{region}.{rule_key}")
  255. # 与其他召回视频池去重,存入对应的redis
  256. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
  257. def h_timer_check():
  258. rule_params = config_.RULE_PARAMS_REGION_24H
  259. project = config_.PROJECT_REGION_24H
  260. table = config_.TABLE_REGION_24H
  261. region_code_list = [code for region, code in region_code.items()]
  262. now_date = datetime.datetime.today()
  263. now_h = datetime.datetime.now().hour
  264. now_min = datetime.datetime.now().minute
  265. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  266. # 查看当天更新的数据是否已准备好
  267. h_data_count = data_check(project=project, table=table, now_date=now_date)
  268. if h_data_count > 0:
  269. log_.info(f'24h_data_count = {h_data_count}')
  270. # 数据准备好,进行更新
  271. rank_by_24h(now_date=now_date, now_h=now_h, rule_params=rule_params,
  272. project=project, table=table, region_code_list=region_code_list)
  273. elif now_min > 50:
  274. log_.info('24h_recall data is None, use bottom data!')
  275. for key, _ in rule_params.items():
  276. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key, region_code_list=region_code_list)
  277. else:
  278. # 数据没准备好,1分钟后重新检查
  279. Timer(60, h_timer_check).start()
  280. if __name__ == '__main__':
  281. h_timer_check()