ad_user_video_predict.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. import datetime
  2. import numpy as np
  3. import pandas as pd
  4. from odps import ODPS
  5. from utils import data_check, get_feature_data, send_msg_to_feishu, RedisHelper
  6. from config import set_config
  7. from log import Log
  8. config_, _ = set_config()
  9. log_ = Log()
  10. redis_helper = RedisHelper()
  11. def predict_user_group_share_rate(dt, app_type):
  12. """预估用户组对应的有广告时分享率"""
  13. # 获取用户组特征
  14. project = config_.ad_model_data['users_share_rate'].get('project')
  15. table = config_.ad_model_data['users_share_rate'].get('table')
  16. features = [
  17. 'apptype',
  18. 'group',
  19. 'sharerate_all',
  20. 'sharerate_ad'
  21. ]
  22. user_group_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  23. user_group_df['apptype'] = user_group_df['apptype'].astype(int)
  24. user_group_df = user_group_df[user_group_df['apptype'] == app_type]
  25. user_group_df['sharerate_all'] = user_group_df['sharerate_all'].astype(float)
  26. user_group_df['sharerate_ad'] = user_group_df['sharerate_ad'].astype(float)
  27. # 获取有广告时所有用户组近30天的分享率
  28. ad_all_group_share_rate = user_group_df[user_group_df['group'] == 'allmids']['sharerate_ad'].values[0]
  29. user_group_df = user_group_df[user_group_df['group'] != 'allmids']
  30. # 计算用户组有广告时分享率
  31. user_group_df['group_ad_share_rate'] = \
  32. user_group_df['sharerate_ad'] * float(ad_all_group_share_rate) / user_group_df['sharerate_all']
  33. return user_group_df
  34. def predict_video_share_rate(dt, app_type):
  35. """预估视频有广告时分享率"""
  36. # 获取视频特征
  37. project = config_.ad_model_data['videos_share_rate'].get('project')
  38. table = config_.ad_model_data['videos_share_rate'].get('table')
  39. features = [
  40. 'apptype',
  41. 'videoid',
  42. 'sharerate_all',
  43. 'sharerate_ad'
  44. ]
  45. video_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  46. video_df['apptype'] = video_df['apptype'].astype(int)
  47. video_df = video_df[video_df['apptype'] == app_type]
  48. video_df['sharerate_all'] = video_df['sharerate_all'].astype(float)
  49. video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float)
  50. # 获取有广告时所有视频近30天的分享率
  51. ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad'].values[0]
  52. video_df = video_df[video_df['videoid'] != 'allvideos']
  53. # 计算视频有广告时分享率
  54. video_df['video_ad_share_rate'] = \
  55. video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all']
  56. return video_df
  57. def predict_ad_group_video(dt, config_key, config_param):
  58. log_.info(f"config_key = {config_key} update start ...")
  59. # 获取用户组预测值
  60. user_data_key = config_param['user'].get('data')
  61. user_rule_key = config_param['user'].get('rule')
  62. group_key_name = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{user_data_key}:{user_rule_key}:{dt}"
  63. group_data = redis_helper.get_all_data_from_zset(key_name=group_key_name, with_scores=True)
  64. if group_data is None:
  65. log_.info(f"group data is None!")
  66. group_df = pd.DataFrame(data=group_data, columns=['group', 'group_ad_share_rate'])
  67. group_df = group_df[group_df['group'] != 'mean_group']
  68. log_.info(f"group_df count = {len(group_df)}")
  69. # 获取视频预测值
  70. video_data_key = config_param['video'].get('data')
  71. video_key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{video_data_key}:{dt}"
  72. video_data = redis_helper.get_all_data_from_zset(key_name=video_key_name, with_scores=True)
  73. if video_data is None:
  74. log_.info(f"video data is None!")
  75. video_df = pd.DataFrame(data=video_data, columns=['videoid', 'video_ad_share_rate'])
  76. video_df = video_df[video_df['videoid'] != -1]
  77. log_.info(f"video_df count = {len(video_df)}")
  78. predict_df = video_df
  79. all_group_data = []
  80. for index, item in group_df.iterrows():
  81. predict_df[item['group']] = predict_df['video_ad_share_rate'] * item['group_ad_share_rate']
  82. all_group_data.extend(predict_df[item['group']].tolist())
  83. # 计算对应的阈值
  84. ad_threshold_mapping = config_param.get('threshold')
  85. threshold_data = {}
  86. for _, item in group_df.iterrows():
  87. # 获取分组对应的均值作为阈值
  88. threshold_data[item['group']] = predict_df[item['group']].mean() * ad_threshold_mapping['group']
  89. threshold_data['mean_group'] = np.mean(all_group_data) * ad_threshold_mapping['mean_group']
  90. log_.info(f"config_key = {config_key}, threshold_data = {threshold_data}")
  91. # 将阈值写入redis
  92. abtest_config_list = config_key.split('-')
  93. abtest_id, abtest_config_tag = abtest_config_list[0], abtest_config_list[1]
  94. for key, val in threshold_data.items():
  95. key_name = f"{config_.KEY_NAME_PREFIX_AD_THRESHOLD}{abtest_id}:{abtest_config_tag}:{key}"
  96. redis_helper.set_data_to_redis(key_name=key_name, value=val, expire_time=2 * 24 * 3600)
  97. predict_df.to_csv(f'./data/ad_user_video_predict_{config_key}.csv')
  98. log_.info(f"config_key = {config_key} update end!")
  99. def predict():
  100. now_date = datetime.datetime.today()
  101. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  102. log_.info(f"dt = {dt}")
  103. params = config_.AD_ABTEST_CONFIG
  104. for config_key, config_param in params.items():
  105. predict_ad_group_video(dt=dt, config_key=config_key, config_param=config_param)
  106. if __name__ == '__main__':
  107. # predict_ad_group_video()
  108. predict()