alg_growth_3rd_gh_reply_video_v1.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361
  1. # -*- coding: utf-8 -*-
  2. import pandas as pd
  3. import traceback
  4. import odps
  5. from odps import ODPS
  6. from threading import Timer
  7. from datetime import datetime, timedelta
  8. from db_helper import MysqlHelper
  9. from my_utils import check_table_partition_exits_v2, get_dataframe_from_odps, \
  10. get_odps_df_of_max_partition, get_odps_instance, get_odps_df_of_recent_partitions
  11. from my_utils import request_post, send_msg_to_feishu
  12. from my_config import set_config
  13. import numpy as np
  14. from log import Log
  15. import os
  16. from argparse import ArgumentParser
  17. from constants import AutoReplyAccountType
  18. CONFIG, _ = set_config()
  19. LOGGER = Log()
  20. BASE_GROUP_NAME = '3rd-party-base'
  21. EXPLORE1_GROUP_NAME = '3rd-party-explore1'
  22. EXPLORE2_GROUP_NAME = '3rd-party-explore2'
  23. # GH_IDS will be updated by get_and_update_gh_ids
  24. GH_IDS = ('default',)
  25. TARGET_GH_IDS = (
  26. 'gh_250c51d5ce69',
  27. 'gh_8a29eebc2012',
  28. 'gh_ff16c412ab97',
  29. 'gh_1014734791e0',
  30. 'gh_570967881eae',
  31. 'gh_a7c21403c493',
  32. 'gh_7f062810b4e7',
  33. 'gh_c8060587e6d1',
  34. 'gh_1da8f62f4a0d',
  35. 'gh_56b65b7d4520',
  36. 'gh_eeec7c2e28a5',
  37. 'gh_7c89d5a3e745',
  38. 'gh_ee5b4b07ed8b',
  39. 'gh_0d3c97cc30cc',
  40. 'gh_c783350a9660',
  41. )
  42. CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center"
  43. ODS_PROJECT = "loghubods"
  44. EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history'
  45. GH_REPLY_STATS_TABLE = 'alg_growth_3rd_gh_reply_video_stats'
  46. # ODPS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  47. ODPS_3RD_RANK_RESULT_TABLE = 'alg_3rd_gh_autoreply_video_rank_data'
  48. GH_DETAIL = 'gh_detail'
  49. RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  50. STATS_PERIOD_DAYS = 5
  51. SEND_N = 1
  52. def get_and_update_gh_ids(run_dt):
  53. gh = get_odps_df_of_max_partition(ODS_PROJECT, GH_DETAIL, {'dt': run_dt})
  54. gh = gh.to_pandas()
  55. gh = gh[gh['type'] == AutoReplyAccountType.EXTERNAL_GZH.value]
  56. # default单独处理
  57. if 'default' not in gh['gh_id'].values:
  58. new_row = pd.DataFrame({'gh_id': ['default'], 'gh_name': ['默认'], 'type': [2], 'category1': ['泛生活']},
  59. index=[0])
  60. gh = pd.concat([gh, new_row], ignore_index=True)
  61. gh = gh.drop_duplicates(subset=['gh_id'])
  62. global GH_IDS
  63. GH_IDS = tuple(gh['gh_id'])
  64. return gh
  65. def check_data_partition(project, table, data_dt, data_hr=None):
  66. """检查数据是否准备好"""
  67. try:
  68. partition_spec = {'dt': data_dt}
  69. if data_hr:
  70. partition_spec['hour'] = data_hr
  71. part_exist, data_count = check_table_partition_exits_v2(
  72. project, table, partition_spec)
  73. except Exception as e:
  74. data_count = 0
  75. return data_count
  76. def get_last_strategy_result(project, rank_table, dt_version, key):
  77. strategy_df = get_odps_df_of_max_partition(
  78. project, rank_table, {'ctime': dt_version}
  79. ).to_pandas()
  80. sub_df = strategy_df.query(f'strategy_key == "{key}"')
  81. sub_df = sub_df[['gh_id', 'video_id', 'strategy_key', 'sort']].drop_duplicates()
  82. return sub_df
  83. def process_reply_stats(project, table, period, run_dt):
  84. # 获取多天即转统计数据用于聚合
  85. df = get_odps_df_of_recent_partitions(project, table, period, {'dt': run_dt})
  86. df = df.to_pandas()
  87. df['video_id'] = df['video_id'].astype('int64')
  88. df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
  89. # 账号内聚合
  90. df = df.groupby(['video_id', 'gh_id']).agg({
  91. 'send_count': 'sum',
  92. 'first_visit_uv': 'sum',
  93. 'day0_return': 'sum'
  94. }).reset_index()
  95. # 聚合所有数据作为default
  96. default_stats_df = df.groupby('video_id').agg({
  97. 'send_count': 'sum',
  98. 'first_visit_uv': 'sum',
  99. 'day0_return': 'sum'
  100. }).reset_index()
  101. default_stats_df['gh_id'] = 'default'
  102. merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True)
  103. merged_df['score'] = merged_df['day0_return'] / (merged_df['send_count'] + 500)
  104. return merged_df
  105. def rank_for_layer1(run_dt, run_hour, project, table, gh):
  106. # TODO: 加审核&退场
  107. df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
  108. df = df.to_pandas()
  109. # 确保重跑时可获得一致结果
  110. dt_version = f'{run_dt}{run_hour}'
  111. np.random.seed(int(dt_version) + 1)
  112. # TODO: 修改权重计算策略
  113. df['score'] = df['ros']
  114. # 按照 category1 分类后进行加权随机抽样
  115. sampled_df = df.groupby('category1').apply(
  116. lambda x: x.sample(n=SEND_N, weights=x['score'], replace=False)).reset_index(drop=True)
  117. sampled_df['sort'] = sampled_df.groupby('category1')['score'].rank(method='first', ascending=False).astype(int)
  118. # 按得分排序
  119. sampled_df = sampled_df.sort_values(by=['category1', 'score'], ascending=[True, False]).reset_index(drop=True)
  120. sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME
  121. sampled_df['dt_version'] = dt_version
  122. extend_df = sampled_df.merge(gh, on='category1')
  123. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  124. return result_df
  125. def rank_for_layer2(run_dt, run_hour, project, stats_table, rank_table):
  126. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  127. # 确保重跑时可获得一致结果
  128. dt_version = f'{run_dt}{run_hour}'
  129. np.random.seed(int(dt_version) + 1)
  130. # TODO: 计算账号间相关性
  131. ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量
  132. ## 求向量相关系数或cosine相似度
  133. ## 单个视频的RoVn加权求和
  134. # 当前实现基础版本:只在账号内求二级探索排序分
  135. sampled_dfs = []
  136. # 处理default逻辑(default-explore2)
  137. default_stats_df = stats_df.query('gh_id == "default"')
  138. sampled_df = default_stats_df.sample(n=SEND_N, weights=default_stats_df['score'])
  139. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  140. sampled_dfs.append(sampled_df)
  141. # 基础过滤for账号
  142. df = stats_df.query('day0_return > 100')
  143. # fallback to base if necessary
  144. base_strategy_df = get_last_strategy_result(
  145. project, rank_table, dt_version, BASE_GROUP_NAME)
  146. for gh_id in GH_IDS:
  147. if gh_id == 'default':
  148. continue
  149. sub_df = df.query(f'gh_id == "{gh_id}"')
  150. if len(sub_df) < SEND_N:
  151. LOGGER.warning(
  152. "gh_id[{}] rows[{}] not enough for layer2, fallback to base"
  153. .format(gh_id, len(sub_df)))
  154. sub_df = base_strategy_df.query(f'gh_id == "{gh_id}"')
  155. sub_df['score'] = sub_df['sort']
  156. sampled_df = sub_df.sample(n=SEND_N, weights=sub_df['score'])
  157. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  158. sampled_dfs.append(sampled_df)
  159. extend_df = pd.concat(sampled_dfs)
  160. extend_df['strategy_key'] = EXPLORE2_GROUP_NAME
  161. extend_df['dt_version'] = dt_version
  162. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  163. return result_df
  164. def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key):
  165. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  166. # TODO: support to set base manually
  167. dt_version = f'{run_dt}{run_hour}'
  168. # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间
  169. base_strategy_df = get_last_strategy_result(
  170. project, rank_table, dt_version, stg_key)
  171. default_stats_df = stats_df.query('gh_id == "default"')
  172. # 在账号内排序,决定该账号(包括default)的base利用内容
  173. # 排序过程中,确保当前base策略参与排序,因此先关联再过滤
  174. gh_ids_str = ','.join(f'"{x}"' for x in GH_IDS)
  175. stats_df = stats_df.query(f'gh_id in ({gh_ids_str})')
  176. stats_with_strategy_df = stats_df \
  177. .merge(
  178. base_strategy_df,
  179. on=['gh_id', 'video_id'],
  180. how='left') \
  181. .query('strategy_key.notna() or score > 0.1')
  182. # 合并default和分账号数据
  183. grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index()
  184. def set_top_n(group, n=2):
  185. group_sorted = group.sort_values(by='score', ascending=False)
  186. top_n = group_sorted.head(n)
  187. top_n['sort'] = range(1, len(top_n) + 1)
  188. return top_n
  189. ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N)
  190. ranked_df = ranked_df.reset_index(drop=True)
  191. ranked_df['strategy_key'] = stg_key
  192. ranked_df['dt_version'] = dt_version
  193. ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  194. return ranked_df
  195. def check_result_data(df):
  196. for gh_id in GH_IDS:
  197. for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME):
  198. sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"')
  199. if len(sub_df) != SEND_N:
  200. raise Exception(f"Result not enough for gh_id[{gh_id}], group[{key}]")
  201. def rank_for_base_designate(run_dt, run_hour, stg_key):
  202. dt_version = f'{run_dt}{run_hour}'
  203. ranked_df = pd.DataFrame() # 初始化一个空的 DataFrame
  204. for gh_id in GH_IDS:
  205. if gh_id in TARGET_GH_IDS:
  206. temp_df = pd.DataFrame({
  207. 'strategy_key': [stg_key],
  208. 'dt_version': [dt_version],
  209. 'gh_id': [gh_id],
  210. 'sort': [1],
  211. 'video_id': [13586800],
  212. 'score': [0.5]
  213. })
  214. else:
  215. temp_df = pd.DataFrame({
  216. 'strategy_key': [stg_key],
  217. 'dt_version': [dt_version],
  218. 'gh_id': [gh_id],
  219. 'sort': [1],
  220. 'video_id': [20463342],
  221. 'score': [0.5]
  222. })
  223. ranked_df = pd.concat([ranked_df, temp_df], ignore_index=True)
  224. return ranked_df
  225. def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
  226. dt_version = f'{run_dt}{run_hour}'
  227. dry_run = kwargs.get('dry_run', False)
  228. gh_df = get_and_update_gh_ids(run_dt)
  229. layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE, ,gh_df)
  230. # layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_3RD_RANK_RESULT_TABLE)
  231. # base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_3RD_RANK_RESULT_TABLE,BASE_GROUP_NAME)
  232. layer2_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE2_GROUP_NAME)
  233. base_rank = rank_for_base_designate(run_dt, run_hour, BASE_GROUP_NAME)
  234. final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True)
  235. check_result_data(final_rank_df)
  236. odps_instance = get_odps_instance(project)
  237. odps_ranked_df = odps.DataFrame(final_rank_df)
  238. video_df = get_dataframe_from_odps('videoods', 'wx_video')
  239. video_df['cover_url'] = video_df['cover_img_path'] + CDN_IMG_OPERATOR
  240. video_df = video_df['id', 'title', 'cover_url']
  241. final_df = odps_ranked_df.join(video_df, on=('video_id', 'id'))
  242. final_df = final_df.to_pandas()
  243. final_df = final_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'title', 'cover_url', 'score']]
  244. # reverse sending order
  245. final_df['sort'] = SEND_N + 1 - final_df['sort']
  246. if dry_run:
  247. print(final_df[['strategy_key', 'gh_id', 'sort', 'video_id', 'score', 'title']])
  248. return
  249. # save to ODPS
  250. t = odps_instance.get_table(ODPS_3RD_RANK_RESULT_TABLE)
  251. part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
  252. part_spec = ','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
  253. with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
  254. writer.write(list(final_df.itertuples(index=False)))
  255. # sync to MySQL
  256. data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)]
  257. data_columns = list(final_df.columns)
  258. mysql = MysqlHelper(CONFIG.MYSQL_CRAWLER_INFO)
  259. mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns)
  260. def main_loop():
  261. argparser = ArgumentParser()
  262. argparser.add_argument('-n', '--dry-run', action='store_true')
  263. args = argparser.parse_args()
  264. try:
  265. now_date = datetime.today()
  266. LOGGER.info(f"开始执行: {datetime.strftime(now_date, '%Y-%m-%d %H:%M')}")
  267. now_hour = now_date.strftime("%H")
  268. last_date = now_date - timedelta(1)
  269. last_dt = last_date.strftime("%Y%m%d")
  270. # 查看当前天级更新的数据是否已准备好
  271. # 当前上游统计表为天级更新,但字段设计为兼容小时级
  272. h_data_count = check_data_partition(ODS_PROJECT, GH_REPLY_STATS_TABLE, last_dt, '00')
  273. if h_data_count > 0:
  274. LOGGER.info('上游数据表查询数据条数={},开始计算'.format(h_data_count))
  275. run_dt = now_date.strftime("%Y%m%d")
  276. LOGGER.info(f'run_dt: {run_dt}, run_hour: {now_hour}')
  277. build_and_transfer_data(run_dt, now_hour, ODS_PROJECT,
  278. dry_run=args.dry_run)
  279. LOGGER.info('数据更新完成')
  280. else:
  281. LOGGER.info("上游数据未就绪,等待60s")
  282. Timer(60, main_loop).start()
  283. return
  284. except Exception as e:
  285. LOGGER.error(f"数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  286. if CONFIG.ENV_TEXT == '开发环境':
  287. return
  288. send_msg_to_feishu(
  289. webhook=CONFIG.FEISHU_ROBOT['server_robot'].get('webhook'),
  290. key_word=CONFIG.FEISHU_ROBOT['server_robot'].get('key_word'),
  291. msg_text=f"rov-offline{CONFIG.ENV_TEXT} - 数据更新失败\n"
  292. f"exception: {e}\n"
  293. f"traceback: {traceback.format_exc()}"
  294. )
  295. if __name__ == '__main__':
  296. LOGGER.info("%s 开始执行" % os.path.basename(__file__))
  297. LOGGER.info(f"environment: {CONFIG.ENV_TEXT}")
  298. main_loop()