region_rule_rank_h.py 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. # -*- coding: utf-8 -*-
  2. # @ModuleName: region_rule_rank_h
  3. # @Author: Liqian
  4. # @Time: 2022/5/5 15:54
  5. # @Software: PyCharm
  6. import multiprocessing
  7. import os
  8. import sys
  9. import gevent
  10. import datetime
  11. import pandas as pd
  12. import math
  13. from functools import reduce
  14. from odps import ODPS
  15. from threading import Timer, Thread
  16. from utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status, filter_shield_video, \
  17. check_table_partition_exits, filter_video_status_app
  18. from config import set_config
  19. from log import Log
  20. from check_video_limit_distribute import update_limit_video_score
  21. # os.environ['NUMEXPR_MAX_THREADS'] = '16'
  22. config_, _ = set_config()
  23. log_ = Log()
  24. region_code = config_.REGION_CODE
  25. features = [
  26. 'apptype',
  27. 'code',
  28. 'videoid',
  29. 'lastonehour_preview', # 过去1小时预曝光人数
  30. 'lastonehour_view', # 过去1小时曝光人数
  31. 'lastonehour_play', # 过去1小时播放人数
  32. 'lastonehour_share', # 过去1小时分享人数
  33. 'lastonehour_return', # 过去1小时分享,过去1小时回流人数
  34. 'lastonehour_preview_total', # 过去1小时预曝光次数
  35. 'lastonehour_view_total', # 过去1小时曝光次数
  36. 'lastonehour_play_total', # 过去1小时播放次数
  37. 'lastonehour_share_total', # 过去1小时分享次数
  38. 'platform_return',
  39. 'lastonehour_show', # 不区分地域
  40. 'lastonehour_show_region', # 地域分组
  41. ]
  42. def get_region_code(region):
  43. """获取省份对应的code"""
  44. mysql_helper = MysqlHelper(mysql_info=config_.MYSQL_INFO)
  45. sql = f"SELECT ad_code FROM region_adcode WHERE parent_id = 0 AND region LIKE '{region}%';"
  46. ad_code = mysql_helper.get_data(sql=sql)
  47. return ad_code[0][0]
  48. def h_data_check(project, table, now_date):
  49. """检查数据是否准备好"""
  50. odps = ODPS(
  51. access_id=config_.ODPS_CONFIG['ACCESSID'],
  52. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  53. project=project,
  54. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  55. connect_timeout=3000,
  56. read_timeout=500000,
  57. pool_maxsize=1000,
  58. pool_connections=1000
  59. )
  60. try:
  61. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  62. check_res = check_table_partition_exits(date=dt, project=project, table=table)
  63. if check_res:
  64. sql = f'select * from {project}.{table} where dt = {dt}'
  65. with odps.execute_sql(sql=sql).open_reader() as reader:
  66. data_count = reader.count
  67. else:
  68. data_count = 0
  69. except Exception as e:
  70. data_count = 0
  71. return data_count
  72. def get_rov_redis_key(now_date):
  73. """获取rov模型结果存放key"""
  74. redis_helper = RedisHelper()
  75. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  76. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  77. if not redis_helper.key_exists(key_name=key_name):
  78. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  79. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  80. return key_name
  81. def get_day_30day_videos(now_date, data_key, rule_key):
  82. """获取天级更新相对30天的视频id"""
  83. redis_helper = RedisHelper()
  84. day_30day_recall_key_prefix = config_.RECALL_KEY_NAME_PREFIX_30DAY
  85. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  86. day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{now_dt}"
  87. if not redis_helper.key_exists(key_name=day_30day_recall_key_name):
  88. redis_dt = datetime.datetime.strftime((now_date - datetime.timedelta(days=1)), '%Y%m%d')
  89. day_30day_recall_key_name = f"{day_30day_recall_key_prefix}{data_key}:{rule_key}:{redis_dt}"
  90. data = redis_helper.get_all_data_from_zset(key_name=day_30day_recall_key_name, with_scores=True)
  91. if data is None:
  92. return None
  93. video_ids = [int(video_id) for video_id, _ in data]
  94. return video_ids
  95. def get_feature_data(project, table, now_date):
  96. """获取特征数据"""
  97. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  98. # dt = '2022041310'
  99. records = get_data_from_odps(date=dt, project=project, table=table)
  100. feature_data = []
  101. for record in records:
  102. item = {}
  103. for feature_name in features:
  104. item[feature_name] = record[feature_name]
  105. feature_data.append(item)
  106. feature_df = pd.DataFrame(feature_data)
  107. return feature_df
  108. def cal_score(df, param):
  109. """
  110. 计算score
  111. :param df: 特征数据
  112. :param param: 规则参数
  113. :return:
  114. """
  115. # score计算公式: sharerate*backrate*logback*ctr
  116. # sharerate = lastonehour_share/(lastonehour_play+1000)
  117. # backrate = lastonehour_return/(lastonehour_share+10)
  118. # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  119. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  120. df = df.fillna(0)
  121. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  122. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  123. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  124. if param.get('view_type', None) == 'video-show':
  125. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  126. elif param.get('view_type', None) == 'video-show-region':
  127. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  128. else:
  129. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  130. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  131. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  132. df['score1'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  133. click_score_rate = param.get('click_score_rate', None)
  134. back_score_rate = param.get('click_score_rate', None)
  135. if click_score_rate is not None:
  136. df['score'] = (1 - click_score_rate) * df['score1'] + click_score_rate * df['K2']
  137. elif back_score_rate is not None:
  138. df['score'] = (1 - back_score_rate) * df['score1'] + back_score_rate * df['back_rate']
  139. else:
  140. df['score'] = df['score1']
  141. df = df.sort_values(by=['score'], ascending=False)
  142. return df
  143. def video_rank(df, now_date, now_h, rule_key, param, region, data_key, rule_rank_h_flag):
  144. """
  145. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  146. :param df:
  147. :param now_date:
  148. :param now_h:
  149. :param rule_key: 小时级数据进入条件
  150. :param param: 小时级数据进入条件参数
  151. :param region: 所属地域
  152. :return:
  153. """
  154. redis_helper = RedisHelper()
  155. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  156. return_count = param.get('return_count', 1)
  157. score_value = param.get('score_rule', 0)
  158. platform_return_rate = param.get('platform_return_rate', 0)
  159. h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
  160. & (df['platform_return_rate'] >= platform_return_rate)]
  161. # videoid重复时,保留分值高
  162. h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
  163. h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  164. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  165. h_recall_videos = h_recall_df['videoid'].to_list()
  166. # log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  167. # 视频状态过滤
  168. if data_key in ['data7', ]:
  169. filtered_videos = filter_video_status_app(h_recall_videos)
  170. else:
  171. filtered_videos = filter_video_status(h_recall_videos)
  172. # log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  173. # 屏蔽视频过滤
  174. shield_key_name_list = config_.SHIELD_CONFIG.get(region, None)
  175. if shield_key_name_list is not None:
  176. filtered_videos = filter_shield_video(video_ids=filtered_videos, shield_key_name_list=shield_key_name_list)
  177. # log_.info(f"shield filtered_videos count = {len(filtered_videos)}")
  178. # 写入对应的redis
  179. h_video_ids = []
  180. by_30day_rule_key = param.get('30day_rule_key', None)
  181. if by_30day_rule_key is not None:
  182. # 与相对30天列表去重
  183. h_video_ids = get_day_30day_videos(now_date=now_date, data_key=data_key, rule_key=by_30day_rule_key)
  184. log_.info(f"h_video_ids count = {len(h_video_ids)}")
  185. if h_video_ids is not None:
  186. filtered_videos = [video_id for video_id in filtered_videos if int(video_id) not in h_video_ids]
  187. log_.info(f"filtered_videos count = {len(filtered_videos)}")
  188. h_recall_result = {}
  189. for video_id in filtered_videos:
  190. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  191. # print(score)
  192. h_recall_result[int(video_id)] = float(score)
  193. h_video_ids.append(int(video_id))
  194. h_recall_key_name = \
  195. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}:{data_key}:{rule_key}:" \
  196. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  197. if len(h_recall_result) > 0:
  198. log_.info(f"h_recall_result count = {len(h_recall_result)}")
  199. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=23 * 3600)
  200. # 限流视频score调整
  201. update_limit_video_score(initial_videos=h_recall_result, key_name=h_recall_key_name)
  202. # 清空线上过滤应用列表
  203. # redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{app_type}.{data_key}.{rule_key}")
  204. region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
  205. by_24h_rule_key = param.get('24h_rule_key', None)
  206. by_48h_rule_key = param.get('48h_rule_key', None)
  207. # 与其他召回视频池去重,存入对应的redis
  208. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key,
  209. region_24h_rule_key=region_24h_rule_key, by_24h_rule_key=by_24h_rule_key, by_48h_rule_key=by_48h_rule_key,
  210. region=region, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag)
  211. def dup_data(h_video_ids, initial_key_name, dup_key_name, region):
  212. redis_helper = RedisHelper()
  213. if redis_helper.key_exists(key_name=initial_key_name):
  214. initial_data = redis_helper.get_all_data_from_zset(key_name=initial_key_name, with_scores=True)
  215. # 屏蔽视频过滤
  216. initial_video_ids = [int(video_id) for video_id, _ in initial_data]
  217. shield_key_name_list = config_.SHIELD_CONFIG.get(region, None)
  218. if shield_key_name_list is not None:
  219. initial_video_ids = filter_shield_video(video_ids=initial_video_ids, shield_key_name_list=shield_key_name_list)
  220. dup_data = {}
  221. for video_id, score in initial_data:
  222. if int(video_id) not in h_video_ids and int(video_id) in initial_video_ids:
  223. dup_data[int(video_id)] = score
  224. h_video_ids.append(int(video_id))
  225. if len(dup_data) > 0:
  226. redis_helper.add_data_with_zset(key_name=dup_key_name, data=dup_data, expire_time=23 * 3600)
  227. # 限流视频score调整
  228. update_limit_video_score(initial_videos=dup_data, key_name=dup_key_name)
  229. return h_video_ids
  230. def dup_to_redis(h_video_ids, now_date, now_h, rule_key, region_24h_rule_key, by_24h_rule_key, by_48h_rule_key, region, data_key, rule_rank_h_flag):
  231. """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
  232. # ##### 去重更新地域分组小时级24h列表,并另存为redis中
  233. region_24h_key_name = \
  234. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}:{data_key}:{region_24h_rule_key}:" \
  235. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  236. region_24h_dup_key_name = \
  237. f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
  238. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  239. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=region_24h_key_name,
  240. dup_key_name=region_24h_dup_key_name, region=region)
  241. if rule_rank_h_flag == '48h':
  242. # ##### 去重小程序相对48h更新结果,并另存为redis中
  243. h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H}{data_key}:{by_48h_rule_key}:" \
  244. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  245. h_48h_dup_key_name = \
  246. f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
  247. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  248. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_48h_key_name,
  249. dup_key_name=h_48h_dup_key_name, region=region)
  250. # ##### 去重小程序相对48h 筛选后剩余数据 更新结果,并另存为redis中
  251. if by_48h_rule_key == 'rule1':
  252. other_h_48h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_48H_OTHER}{data_key}:" \
  253. f"{by_48h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  254. other_h_48h_dup_key_name = \
  255. f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_48H_H}{region}:{data_key}:{rule_key}:" \
  256. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  257. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_48h_key_name,
  258. dup_key_name=other_h_48h_dup_key_name, region=region)
  259. else:
  260. # ##### 去重小程序相对24h更新结果,并另存为redis中
  261. h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{data_key}:{by_24h_rule_key}:" \
  262. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  263. h_24h_dup_key_name = \
  264. f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
  265. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  266. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=h_24h_key_name,
  267. dup_key_name=h_24h_dup_key_name, region=region)
  268. # ##### 去重小程序相对24h 筛选后剩余数据 更新结果,并另存为redis中
  269. # if by_24h_rule_key in ['rule3', 'rule4']:
  270. other_h_24h_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H_OTHER}{data_key}:" \
  271. f"{by_24h_rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  272. other_h_24h_dup_key_name = \
  273. f"{config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H}{region}:{data_key}:{rule_key}:" \
  274. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  275. h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=other_h_24h_key_name,
  276. dup_key_name=other_h_24h_dup_key_name, region=region)
  277. # ##### 去重小程序模型更新结果,并另存为redis中
  278. # model_key_name = get_rov_redis_key(now_date=now_date)
  279. # model_data_dup_key_name = \
  280. # f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H}{region}:{data_key}:{rule_key}:" \
  281. # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  282. # h_video_ids = dup_data(h_video_ids=h_video_ids, initial_key_name=model_key_name,
  283. # dup_key_name=model_data_dup_key_name, region=region)
  284. def merge_df(df_left, df_right):
  285. """
  286. df按照videoid, code 合并,对应特征求和
  287. :param df_left:
  288. :param df_right:
  289. :return:
  290. """
  291. df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
  292. df_merged.fillna(0, inplace=True)
  293. feature_list = ['videoid', 'code']
  294. for feature in features:
  295. if feature in ['apptype', 'videoid', 'code']:
  296. continue
  297. df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
  298. feature_list.append(feature)
  299. return df_merged[feature_list]
  300. def merge_df_with_score(df_left, df_right):
  301. """
  302. df 按照[videoid, code]合并,平台回流人数、回流人数、分数 分别求和
  303. :param df_left:
  304. :param df_right:
  305. :return:
  306. """
  307. df_merged = pd.merge(df_left, df_right, on=['videoid', 'code'], how='outer', suffixes=['_x', '_y'])
  308. df_merged.fillna(0, inplace=True)
  309. feature_list = ['videoid', 'code', 'lastonehour_return', 'platform_return', 'score']
  310. for feature in feature_list[2:]:
  311. df_merged[feature] = df_merged[f'{feature}_x'] + df_merged[f'{feature}_y']
  312. return df_merged[feature_list]
  313. def process_with_region(region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag):
  314. log_.info(f"region = {region} start...")
  315. # 计算score
  316. region_df = df_merged[df_merged['code'] == region]
  317. log_.info(f'region = {region}, region_df count = {len(region_df)}')
  318. score_df = cal_score(df=region_df, param=rule_param)
  319. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=rule_key, param=rule_param,
  320. region=region, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag)
  321. log_.info(f"region = {region} end!")
  322. def process_with_region2(region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag):
  323. log_.info(f"region = {region} start...")
  324. region_score_df = df_merged[df_merged['code'] == region]
  325. log_.info(f'region = {region}, region_score_df count = {len(region_score_df)}')
  326. video_rank(df=region_score_df, now_date=now_date, now_h=now_h, region=region,
  327. rule_key=rule_key, param=rule_param, data_key=data_key, rule_rank_h_flag=rule_rank_h_flag)
  328. log_.info(f"region = {region} end!")
  329. def process_with_app_type(app_type, params, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
  330. log_.info(f"app_type = {app_type} start...")
  331. data_params_item = params.get('data_params')
  332. rule_params_item = params.get('rule_params')
  333. task_list = []
  334. for param in params.get('params_list'):
  335. data_key = param.get('data')
  336. data_param = data_params_item.get(data_key)
  337. log_.info(f"data_key = {data_key}, data_param = {data_param}")
  338. df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  339. df_merged = reduce(merge_df, df_list)
  340. rule_key = param.get('rule')
  341. rule_param = rule_params_item.get(rule_key)
  342. log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  343. task_list.extend(
  344. [
  345. gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
  346. now_date, now_h, rule_rank_h_flag)
  347. for region in region_code_list
  348. ]
  349. )
  350. gevent.joinall(task_list)
  351. log_.info(f"app_type = {app_type} end!")
  352. # log_.info(f"app_type = {app_type}")
  353. # task_list = []
  354. # for data_key, data_param in params['data_params'].items():
  355. # log_.info(f"data_key = {data_key}, data_param = {data_param}")
  356. # df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  357. # df_merged = reduce(merge_df, df_list)
  358. # for rule_key, rule_param in params['rule_params'].items():
  359. # log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  360. # task_list.extend(
  361. # [
  362. # gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param,
  363. # now_date, now_h)
  364. # for region in region_code_list
  365. # ]
  366. # )
  367. # gevent.joinall(task_list)
  368. def copy_data_for_city(region, city_code, data_key, rule_key, now_date, now_h):
  369. """copy 对应数据到城市对应redis,并做相应屏蔽视频过滤"""
  370. log_.info(f"city_code = {city_code} start ...")
  371. redis_helper = RedisHelper()
  372. key_prefix_list = [
  373. config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H, # 地域小时级
  374. config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H, # 地域相对24h
  375. config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H, # 不区分地域相对24h
  376. config_.RECALL_KEY_NAME_PREFIX_DUP3_REGION_24H_H, # 不区分地域相对24h筛选后
  377. config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H, # rov大列表
  378. ]
  379. for key_prefix in key_prefix_list:
  380. region_key = f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  381. city_key = f"{key_prefix}{city_code}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  382. if not redis_helper.key_exists(key_name=region_key):
  383. continue
  384. region_data = redis_helper.get_all_data_from_zset(key_name=region_key, with_scores=True)
  385. if not region_data:
  386. continue
  387. # 屏蔽视频过滤
  388. region_video_ids = [int(video_id) for video_id, _ in region_data]
  389. shield_key_name_list = config_.SHIELD_CONFIG.get(city_code, None)
  390. if shield_key_name_list is not None:
  391. filtered_video_ids = filter_shield_video(video_ids=region_video_ids,
  392. shield_key_name_list=shield_key_name_list)
  393. else:
  394. filtered_video_ids = region_video_ids
  395. city_data = {}
  396. for video_id, score in region_data:
  397. if int(video_id) in filtered_video_ids:
  398. city_data[int(video_id)] = score
  399. if len(city_data) > 0:
  400. redis_helper.add_data_with_zset(key_name=city_key, data=city_data, expire_time=23 * 3600)
  401. log_.info(f"city_code = {city_code} end!")
  402. def process_with_param(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag):
  403. log_.info(f"param = {param} start...")
  404. data_key = param.get('data')
  405. data_param = data_params_item.get(data_key)
  406. log_.info(f"data_key = {data_key}, data_param = {data_param}")
  407. rule_key = param.get('rule')
  408. rule_param = rule_params_item.get(rule_key)
  409. log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  410. merge_func = rule_param.get('merge_func', None)
  411. if merge_func == 2:
  412. score_df_list = []
  413. for apptype, weight in data_param.items():
  414. df = feature_df[feature_df['apptype'] == apptype]
  415. # 计算score
  416. score_df = cal_score(df=df, param=rule_param)
  417. score_df['score'] = score_df['score'] * weight
  418. score_df_list.append(score_df)
  419. # 分数合并
  420. df_merged = reduce(merge_df_with_score, score_df_list)
  421. # 更新平台回流比
  422. df_merged['platform_return_rate'] = df_merged['platform_return'] / df_merged['lastonehour_return']
  423. task_list = [
  424. gevent.spawn(process_with_region2,
  425. region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag)
  426. for region in region_code_list
  427. ]
  428. else:
  429. df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  430. df_merged = reduce(merge_df, df_list)
  431. task_list = [
  432. gevent.spawn(process_with_region,
  433. region, df_merged, data_key, rule_key, rule_param, now_date, now_h, rule_rank_h_flag)
  434. for region in region_code_list
  435. ]
  436. gevent.joinall(task_list)
  437. # 特殊城市视频数据准备
  438. for region, city_list in config_.REGION_CITY_MAPPING.items():
  439. t = [
  440. gevent.spawn(
  441. copy_data_for_city,
  442. region, city_code, data_key, rule_key, now_date, now_h
  443. )
  444. for city_code in city_list
  445. ]
  446. gevent.joinall(t)
  447. log_.info(f"param = {param} end!")
  448. def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
  449. # 获取特征数据
  450. feature_df = get_feature_data(project=project, table=table, now_date=now_date)
  451. feature_df['apptype'] = feature_df['apptype'].astype(int)
  452. data_params_item = rule_params.get('data_params')
  453. rule_params_item = rule_params.get('rule_params')
  454. params_list = rule_params.get('params_list')
  455. pool = multiprocessing.Pool(processes=len(params_list))
  456. for param in params_list:
  457. pool.apply_async(
  458. func=process_with_param,
  459. args=(param, data_params_item, rule_params_item, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag)
  460. )
  461. pool.close()
  462. pool.join()
  463. # pool = multiprocessing.Pool(processes=len(config_.APP_TYPE))
  464. # for app_type, params in rule_params.items():
  465. # pool.apply_async(func=process_with_app_type,
  466. # args=(app_type, params, region_code_list, feature_df, now_date, now_h, rule_rank_h_flag))
  467. # pool.close()
  468. # pool.join()
  469. """
  470. for app_type, params in rule_params.items():
  471. log_.info(f"app_type = {app_type} start...")
  472. data_params_item = params.get('data_params')
  473. rule_params_item = params.get('rule_params')
  474. for param in params.get('params_list'):
  475. log_.info(f"param = {param} start...")
  476. data_key = param.get('data')
  477. data_param = data_params_item.get(data_key)
  478. log_.info(f"data_key = {data_key}, data_param = {data_param}")
  479. df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  480. df_merged = reduce(merge_df, df_list)
  481. rule_key = param.get('rule')
  482. rule_param = rule_params_item.get(rule_key)
  483. log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  484. task_list = []
  485. for region in region_code_list:
  486. t = Thread(target=process_with_region,
  487. args=(region, df_merged, app_type, data_key, rule_key, rule_param, now_date, now_h)
  488. )
  489. t.start()
  490. task_list.append(t)
  491. for t in task_list:
  492. t.join()
  493. log_.info(f"param = {param} end!")
  494. log_.info(f"app_type = {app_type} end!")
  495. """
  496. # for app_type, params in rule_params.items():
  497. # log_.info(f"app_type = {app_type}")
  498. # for data_key, data_param in params['data_params'].items():
  499. # log_.info(f"data_key = {data_key}, data_param = {data_param}")
  500. # df_list = [feature_df[feature_df['apptype'] == apptype] for apptype in data_param]
  501. # df_merged = reduce(merge_df, df_list)
  502. # for rule_key, rule_param in params['rule_params'].items():
  503. # log_.info(f"rule_key = {rule_key}, rule_param = {rule_param}")
  504. # task_list = [
  505. # gevent.spawn(process_with_region, region, df_merged, app_type, data_key, rule_key, rule_param, now_date, now_h)
  506. # for region in region_code_list
  507. # ]
  508. # gevent.joinall(task_list)
  509. # rank
  510. # for key, value in rule_params.items():
  511. # log_.info(f"rule = {key}, param = {value}")
  512. # for region in region_code_list:
  513. # log_.info(f"region = {region}")
  514. # # 计算score
  515. # region_df = feature_df[feature_df['code'] == region]
  516. # log_.info(f'region_df count = {len(region_df)}')
  517. # score_df = cal_score(df=region_df, param=value)
  518. # video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
  519. # # to-csv
  520. # score_filename = f"score_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  521. # score_df.to_csv(f'./data/{score_filename}')
  522. # # to-logs
  523. # log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
  524. # "region_code": region,
  525. # "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,
  526. # "rule_key": key,
  527. # # "score_df": score_df[['videoid', 'score']]
  528. # }
  529. # )
  530. def h_rank_bottom(now_date, now_h, rule_params, region_code_list, rule_rank_h_flag):
  531. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  532. # 获取rov模型结果
  533. redis_helper = RedisHelper()
  534. if now_h == 0:
  535. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  536. redis_h = 23
  537. else:
  538. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  539. redis_h = now_h - 1
  540. # 以上一小时的地域分组数据作为当前小时的数据
  541. key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H
  542. rule_params_item = rule_params.get('rule_params')
  543. for param in rule_params.get('params_list'):
  544. data_key = param.get('data')
  545. rule_key = param.get('rule')
  546. rule_param = rule_params_item.get(rule_key)
  547. log_.info(f"data_key = {data_key}, rule_key = {rule_key}, rule_param = {rule_param}")
  548. region_24h_rule_key = rule_param.get('region_24h_rule_key', 'rule1')
  549. by_24h_rule_key = rule_param.get('24h_rule_key', None)
  550. by_48h_rule_key = rule_param.get('48h_rule_key', None)
  551. for region in region_code_list:
  552. log_.info(f"region = {region}")
  553. key_name = f"{key_prefix}{region}:{data_key}:{rule_key}:{redis_dt}:{redis_h}"
  554. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  555. if initial_data is None:
  556. initial_data = []
  557. final_data = dict()
  558. h_video_ids = []
  559. for video_id, score in initial_data:
  560. final_data[video_id] = score
  561. h_video_ids.append(int(video_id))
  562. # 存入对应的redis
  563. final_key_name = \
  564. f"{key_prefix}{region}:{data_key}:{rule_key}:{datetime.datetime.strftime(now_date, '%Y%m%d')}:{now_h}"
  565. if len(final_data) > 0:
  566. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  567. # 与其他召回视频池去重,存入对应的redis
  568. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key,
  569. region_24h_rule_key=region_24h_rule_key, region=region,
  570. data_key=data_key, by_24h_rule_key=by_24h_rule_key,
  571. by_48h_rule_key=by_48h_rule_key, rule_rank_h_flag=rule_rank_h_flag)
  572. # 特殊城市视频数据准备
  573. for region, city_list in config_.REGION_CITY_MAPPING.items():
  574. t = [
  575. gevent.spawn(
  576. copy_data_for_city,
  577. region, city_code, data_key, rule_key, now_date, now_h
  578. )
  579. for city_code in city_list
  580. ]
  581. gevent.joinall(t)
  582. def h_timer_check():
  583. rule_rank_h_flag = sys.argv[1]
  584. if rule_rank_h_flag == '48h':
  585. rule_params = config_.RULE_PARAMS_REGION_APP_TYPE_48H
  586. else:
  587. rule_params = config_.RULE_PARAMS_REGION_APP_TYPE
  588. project = config_.PROJECT_REGION_APP_TYPE
  589. table = config_.TABLE_REGION_APP_TYPE
  590. region_code_list = [code for region, code in region_code.items()]
  591. now_date = datetime.datetime.today()
  592. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}, rule_rank_h_flag: {rule_rank_h_flag}")
  593. now_h = datetime.datetime.now().hour
  594. now_min = datetime.datetime.now().minute
  595. if now_h == 0:
  596. h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
  597. rule_rank_h_flag=rule_rank_h_flag)
  598. return
  599. # 查看当前小时更新的数据是否已准备好
  600. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  601. if h_data_count > 0:
  602. log_.info(f'region_h_data_count = {h_data_count}')
  603. # 数据准备好,进行更新
  604. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
  605. project=project, table=table, region_code_list=region_code_list, rule_rank_h_flag=rule_rank_h_flag)
  606. log_.info(f"region_h_data end!")
  607. elif now_min > 50:
  608. log_.info('h_recall data is None, use bottom data!')
  609. h_rank_bottom(now_date=now_date, now_h=now_h, rule_params=rule_params, region_code_list=region_code_list,
  610. rule_rank_h_flag=rule_rank_h_flag)
  611. log_.info(f"region_h_data end!")
  612. else:
  613. # 数据没准备好,1分钟后重新检查
  614. Timer(60, h_timer_check).start()
  615. if __name__ == '__main__':
  616. log_.info(f"region_h_data start...")
  617. h_timer_check()