rule_rank_h.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. import datetime
  2. import pandas as pd
  3. import math
  4. from odps import ODPS
  5. from threading import Timer
  6. from get_data import get_data_from_odps
  7. from db_helper import RedisHelper
  8. from config import set_config
  9. from log import Log
  10. config_, _ = set_config()
  11. log_ = Log()
  12. project = 'loghubods'
  13. table = 'video_each_hour_update'
  14. features = [
  15. 'videoid',
  16. 'lastonehour_view', # 过去1小时曝光
  17. 'lastonehour_play', # 过去1小时播放
  18. 'lastonehour_share', # 过去1小时分享
  19. 'lastonehour_return', # 过去1小时分享,过去1小时回流
  20. ]
  21. def h_data_check(project, table, now_date):
  22. """检查数据是否准备好"""
  23. odps = ODPS(
  24. access_id=config_.ODPS_CONFIG['ACCESSID'],
  25. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  26. project=project,
  27. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  28. connect_timeout=3000,
  29. read_timeout=500000,
  30. pool_maxsize=1000,
  31. pool_connections=1000
  32. )
  33. try:
  34. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  35. sql = f'select * from {project}.{table} where dt = {dt}'
  36. with odps.execute_sql(sql=sql).open_reader() as reader:
  37. data_count = reader.count
  38. except Exception as e:
  39. data_count = 0
  40. return data_count
  41. def get_rov_redis_key(now_date):
  42. # 获取rov模型结果存放key
  43. redis_helper = RedisHelper()
  44. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  45. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  46. if not redis_helper.key_exists(key_name=key_name):
  47. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  48. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  49. return key_name
  50. def get_feature_data(now_date):
  51. """获取特征数据"""
  52. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  53. # dt = '2022041310'
  54. records = get_data_from_odps(date=dt, project=project, table=table)
  55. feature_data = []
  56. for record in records:
  57. item = {}
  58. for feature_name in features:
  59. item[feature_name] = record[feature_name]
  60. feature_data.append(item)
  61. feature_df = pd.DataFrame(feature_data)
  62. return feature_df
  63. def cal_score(df):
  64. """
  65. 计算score
  66. :param df: 特征数据
  67. :return:
  68. """
  69. # score计算公式: sharerate*backrate*logback*ctr
  70. # sharerate = lastonehour_share/(lastonehour_play+1000)
  71. # backrate = lastonehour_return/(lastonehour_share+10)
  72. # ctr = lastonehour_play/(lastonehour_view+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  73. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  74. df = df.fillna(0)
  75. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  76. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  77. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  78. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_view'] + 1000)
  79. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  80. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  81. df = df.sort_values(by=['score'], ascending=False)
  82. return df
  83. def video_rank(df, now_date, now_h):
  84. """
  85. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  86. :param df:
  87. :param now_date:
  88. :param now_h:
  89. :return:
  90. """
  91. # 获取rov模型结果
  92. redis_helper = RedisHelper()
  93. key_name = get_rov_redis_key(now_date=now_date)
  94. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  95. log_.info(f'initial data count = {len(initial_data)}')
  96. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  97. h_recall_df = df[(df['lastonehour_return'] >= 20) & (df['score'] >= 0.005)]
  98. h_recall_videos = h_recall_df['videoid'].to_list()
  99. log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  100. # 去重合并
  101. final_videos = [int(item) for item in h_recall_videos]
  102. temp_videos = [int(video_id) for video_id, _ in initial_data if int(video_id) not in final_videos]
  103. final_videos = final_videos + temp_videos
  104. log_.info(f'final videos count = {len(final_videos)}')
  105. # 重新给定score
  106. final_data = {}
  107. for i, video_id in enumerate(final_videos):
  108. score = 100 - i * config_.ROV_SCORE_D
  109. final_data[video_id] = score
  110. # 存入对应的redis
  111. final_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  112. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=24 * 3600)
  113. def rank_by_h(now_date, now_h):
  114. # 获取特征数据
  115. feature_df = get_feature_data(now_date=now_date)
  116. # 计算score
  117. score_df = cal_score(df=feature_df)
  118. # rank
  119. video_rank(df=score_df, now_date=now_date, now_h=now_h)
  120. # to-csv
  121. score_filename = f"score_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  122. score_df.to_csv(f'./data/{score_filename}')
  123. def h_rank_bottom(now_date, now_h):
  124. """未按时更新数据,用rov模型结果作为当前小时的数据"""
  125. # 获取rov模型结果
  126. redis_helper = RedisHelper()
  127. key_name = get_rov_redis_key(now_date=now_date)
  128. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  129. final_data = dict()
  130. for video_id, score in initial_data:
  131. final_data[video_id] = score
  132. # 存入对应的redis
  133. final_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  134. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=24 * 3600)
  135. def h_timer_check():
  136. now_date = datetime.datetime.today()
  137. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  138. now_h = datetime.datetime.now().hour
  139. now_min = datetime.datetime.now().minute
  140. # 查看当前小时更新的数据是否已准备好
  141. op_data_count = h_data_check(project=project, table=table, now_date=now_date)
  142. if op_data_count > 0:
  143. # 数据准备好,进行更新
  144. rank_by_h(now_date=now_date, now_h=now_h)
  145. elif now_min > 50:
  146. log_.info('h_recall data is None, use bottom data!')
  147. h_rank_bottom(now_date=now_date, now_h=now_h)
  148. else:
  149. # 数据没准备好,1分钟后重新检查
  150. Timer(60, h_timer_check).start()
  151. if __name__ == '__main__':
  152. # df1 = get_feature_data()
  153. # res = cal_score(df=df1)
  154. # video_rank(df=res, now_date=datetime.datetime.today())
  155. # rank_by_h()
  156. h_timer_check()