ad_predict_video_data_process.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. import os.path
  2. import time
  3. import datetime
  4. import pandas as pd
  5. from odps import ODPS
  6. from utils import data_check
  7. from threading import Timer
  8. # ODPS服务配置
  9. odps_config = {
  10. 'ENDPOINT': 'http://service.cn.maxcompute.aliyun.com/api',
  11. 'ACCESSID': 'LTAIWYUujJAm7CbH',
  12. 'ACCESSKEY': 'RfSjdiWwED1sGFlsjXv0DlfTnZTG1P',
  13. }
  14. features = [
  15. 'apptype',
  16. 'videoid',
  17. 'video_preview_count_uv_30day',
  18. 'video_preview_count_pv_30day',
  19. 'video_view_count_uv_30day',
  20. 'video_view_count_pv_30day',
  21. 'video_play_count_uv_30day',
  22. 'video_play_count_pv_30day',
  23. 'video_share_count_uv_30day',
  24. 'video_share_count_pv_30day',
  25. 'video_return_count_30day',
  26. 'video_ctr_uv_30day',
  27. 'video_ctr_pv_30day',
  28. 'video_share_rate_uv_30day',
  29. 'video_share_rate_pv_30day',
  30. 'video_return_rate_30day',
  31. ]
  32. def get_feature_data(project, table, dt, app_type):
  33. """获取特征数据"""
  34. odps = ODPS(
  35. access_id=odps_config['ACCESSID'],
  36. secret_access_key=odps_config['ACCESSKEY'],
  37. project=project,
  38. endpoint=odps_config['ENDPOINT'],
  39. )
  40. feature_data = []
  41. sql = f"select * from {project}.{table} where dt={dt} and apptype={app_type} limit 1000"
  42. with odps.execute_sql(sql).open_reader() as reader:
  43. for record in reader:
  44. # print(record)
  45. item = {}
  46. for feature_name in features:
  47. item[feature_name] = record[feature_name]
  48. feature_data.append(item)
  49. feature_df = pd.DataFrame(feature_data)
  50. return feature_df
  51. def video_data_process(project, table, dt, app_type):
  52. """每日特征处理"""
  53. print('step 1: get video feature data')
  54. feature_initial_df = get_feature_data(project=project, table=table, dt=dt, app_type=app_type)
  55. print(f"feature_initial_df shape: {feature_initial_df.shape}")
  56. print('step 2: process')
  57. feature_initial_df['apptype'] = feature_initial_df['apptype'].astype(int)
  58. feature_df = feature_initial_df.copy()
  59. # 缺失值填充
  60. feature_df.fillna(0, inplace=True)
  61. # 数据类型校正
  62. type_int_columns = [
  63. 'video_preview_count_uv_30day',
  64. 'video_preview_count_pv_30day',
  65. 'video_view_count_uv_30day',
  66. 'video_view_count_pv_30day',
  67. 'video_play_count_uv_30day',
  68. 'video_play_count_pv_30day',
  69. 'video_share_count_uv_30day',
  70. 'video_share_count_pv_30day',
  71. 'video_return_count_30day',
  72. ]
  73. for column_name in type_int_columns:
  74. feature_df[column_name] = feature_df[column_name].astype(int)
  75. type_float_columns = [
  76. 'video_ctr_uv_30day',
  77. 'video_ctr_pv_30day',
  78. 'video_share_rate_uv_30day',
  79. 'video_share_rate_pv_30day',
  80. 'video_return_rate_30day',
  81. ]
  82. for column_name in type_float_columns:
  83. feature_df[column_name] = feature_df[column_name].astype(float)
  84. print(f"feature_df shape: {feature_df.shape}")
  85. print('step 3: add new video feature')
  86. # 补充新用户默认数据(使用均值)
  87. new_video_feature = {
  88. 'apptype': app_type,
  89. 'videoid': '-1',
  90. 'video_preview_count_uv_30day': int(feature_df['video_preview_count_uv_30day'].mean()),
  91. 'video_preview_count_pv_30day': int(feature_df['video_preview_count_pv_30day'].mean()),
  92. 'video_view_count_uv_30day': int(feature_df['video_view_count_uv_30day'].mean()),
  93. 'video_view_count_pv_30day': int(feature_df['video_view_count_pv_30day'].mean()),
  94. 'video_play_count_uv_30day': int(feature_df['video_play_count_uv_30day'].mean()),
  95. 'video_play_count_pv_30day': int(feature_df['video_play_count_pv_30day'].mean()),
  96. 'video_share_count_uv_30day': int(feature_df['video_share_count_uv_30day'].mean()),
  97. 'video_share_count_pv_30day': int(feature_df['video_share_count_pv_30day'].mean()),
  98. 'video_return_count_30day': int(feature_df['video_return_count_30day'].mean()),
  99. }
  100. new_video_feature['video_ctr_uv_30day'] = float(
  101. new_video_feature['video_play_count_uv_30day'] / new_video_feature['video_view_count_uv_30day'] + 1)
  102. new_video_feature['video_ctr_pv_30day'] = float(
  103. new_video_feature['video_play_count_pv_30day'] / new_video_feature['video_view_count_pv_30day'] + 1)
  104. new_video_feature['video_share_rate_uv_30day'] = float(
  105. new_video_feature['video_share_count_uv_30day'] / new_video_feature['video_play_count_uv_30day'] + 1)
  106. new_video_feature['video_share_rate_pv_30day'] = float(
  107. new_video_feature['video_share_count_pv_30day'] / new_video_feature['video_play_count_pv_30day'] + 1)
  108. new_video_feature['video_return_rate_30day'] = float(
  109. new_video_feature['video_return_count_30day'] / new_video_feature['video_view_count_pv_30day'] + 1)
  110. new_video_feature_df = pd.DataFrame([new_video_feature])
  111. video_df = pd.concat([feature_df, new_video_feature_df])
  112. print(f"video_df shape: {video_df.shape}")
  113. print(f"step 4: to csv")
  114. # 写入csv
  115. predict_data_dir = './data/predict_data'
  116. if not os.path.exists(predict_data_dir):
  117. os.makedirs(predict_data_dir)
  118. video_df.to_csv(f"{predict_data_dir}/video_feature.csv", index=False)
  119. def timer_check():
  120. project = 'loghubods'
  121. table = 'admodel_testset_video'
  122. # dt = '20230725'
  123. now_date = datetime.datetime.today()
  124. dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  125. # 查看当前更新的数据是否已准备好
  126. data_count = data_check(project=project, table=table, dt=dt)
  127. if data_count > 0:
  128. print(f"ad predict video data count = {data_count}")
  129. # 数据准备好,进行更新
  130. video_data_process(project=project, table=table, dt=dt, app_type=0)
  131. print(f"ad predict video data update end!")
  132. else:
  133. # 数据没准备好,1分钟后重新检查
  134. Timer(60, timer_check).start()
  135. if __name__ == '__main__':
  136. st_time = time.time()
  137. timer_check()
  138. print(f"{time.time() - st_time}s")