alg_growth_3rd_gh_reply_video_v1.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. # -*- coding: utf-8 -*-
  2. import pandas as pd
  3. import traceback
  4. import odps
  5. from odps import ODPS
  6. import json
  7. from threading import Timer
  8. from datetime import datetime, timedelta
  9. from db_helper import MysqlHelper
  10. from my_utils import check_table_partition_exits_v2, get_dataframe_from_odps, \
  11. get_odps_df_of_max_partition, get_odps_instance, get_odps_df_of_recent_partitions
  12. from my_utils import request_post, send_msg_to_feishu
  13. from my_config import set_config
  14. import numpy as np
  15. from log import Log
  16. import os
  17. from argparse import ArgumentParser
  18. from constants import AutoReplyAccountType
  19. CONFIG, _ = set_config()
  20. LOGGER = Log()
  21. BASE_GROUP_NAME = '3rd-party-base'
  22. EXPLORE1_GROUP_NAME = '3rd-party-explore1'
  23. EXPLORE2_GROUP_NAME = '3rd-party-explore2'
  24. # GH_IDS will be updated by get_and_update_gh_ids
  25. GH_IDS = ('default',)
  26. TARGET_GH_IDS = (
  27. 'gh_250c51d5ce69',
  28. 'gh_8a29eebc2012',
  29. 'gh_ff16c412ab97',
  30. 'gh_1014734791e0',
  31. 'gh_570967881eae',
  32. 'gh_a7c21403c493',
  33. 'gh_7f062810b4e7',
  34. 'gh_c8060587e6d1',
  35. 'gh_1da8f62f4a0d',
  36. 'gh_56b65b7d4520',
  37. 'gh_eeec7c2e28a5',
  38. 'gh_7c89d5a3e745',
  39. 'gh_ee5b4b07ed8b',
  40. 'gh_0d3c97cc30cc',
  41. 'gh_c783350a9660',
  42. )
  43. CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center"
  44. ODS_PROJECT = "loghubods"
  45. EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history'
  46. GH_REPLY_STATS_TABLE = 'alg_growth_3rd_gh_reply_video_stats'
  47. ODPS_RANK_RESULT_TABLE = 'alg_3rd_gh_autoreply_video_rank_data'
  48. GH_DETAIL = 'gh_detail'
  49. RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  50. STATS_PERIOD_DAYS = 5
  51. SEND_N = 1
  52. def get_and_update_gh_ids(run_dt):
  53. gh = get_odps_df_of_max_partition(ODS_PROJECT, GH_DETAIL, {'dt': run_dt})
  54. gh = gh.to_pandas()
  55. gh = gh[gh['type'] == AutoReplyAccountType.EXTERNAL_GZH.value]
  56. # default单独处理
  57. if 'default' not in gh['gh_id'].values:
  58. new_row = pd.DataFrame({'gh_id': ['default'], 'gh_name': ['默认'], 'type': [2], 'category1': ['泛生活']},
  59. index=[0])
  60. gh = pd.concat([gh, new_row], ignore_index=True)
  61. gh = gh.drop_duplicates(subset=['gh_id'])
  62. global GH_IDS
  63. GH_IDS = tuple(gh['gh_id'])
  64. return gh
  65. def check_data_partition(project, table, data_dt, data_hr=None):
  66. """检查数据是否准备好"""
  67. try:
  68. partition_spec = {'dt': data_dt}
  69. if data_hr:
  70. partition_spec['hour'] = data_hr
  71. part_exist, data_count = check_table_partition_exits_v2(
  72. project, table, partition_spec)
  73. except Exception as e:
  74. data_count = 0
  75. return data_count
  76. def get_last_strategy_result(project, rank_table, dt_version, key):
  77. strategy_df = get_odps_df_of_max_partition(
  78. project, rank_table, {'ctime': dt_version}
  79. ).to_pandas()
  80. sub_df = strategy_df.query(f'strategy_key == "{key}"')
  81. sub_df = sub_df[['gh_id', 'video_id', 'strategy_key', 'sort']].drop_duplicates()
  82. return sub_df
  83. def process_reply_stats(project, table, period, run_dt):
  84. # 获取多天即转统计数据用于聚合
  85. df = get_odps_df_of_recent_partitions(project, table, period, {'dt': run_dt})
  86. df = df.to_pandas()
  87. df['video_id'] = df['video_id'].astype('int64')
  88. df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
  89. # 账号内聚合
  90. df = df.groupby(['video_id', 'gh_id']).agg({
  91. 'send_count': 'sum',
  92. 'first_visit_uv': 'sum',
  93. 'day0_return': 'sum'
  94. }).reset_index()
  95. # 聚合所有数据作为default
  96. default_stats_df = df.groupby('video_id').agg({
  97. 'send_count': 'sum',
  98. 'first_visit_uv': 'sum',
  99. 'day0_return': 'sum'
  100. }).reset_index()
  101. default_stats_df['gh_id'] = 'default'
  102. merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True)
  103. merged_df['score'] = merged_df['day0_return'] / (merged_df['send_count'] + 500)
  104. return merged_df
  105. def rank_for_layer1(run_dt, run_hour, project, table, gh):
  106. # TODO: 加审核&退场
  107. df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
  108. df = df.to_pandas()
  109. # 确保重跑时可获得一致结果
  110. dt_version = f'{run_dt}{run_hour}'
  111. np.random.seed(int(dt_version) + 1)
  112. # TODO: 修改权重计算策略
  113. df['score'] = df['ros']
  114. # 按照 category1 分类后进行加权随机抽样
  115. sampled_df = df.groupby('category1').apply(
  116. lambda x: x.sample(n=SEND_N, weights=x['score'], replace=False)).reset_index(drop=True)
  117. sampled_df['sort'] = sampled_df.groupby('category1')['score'].rank(method='first', ascending=False).astype(int)
  118. # 按得分排序
  119. sampled_df = sampled_df.sort_values(by=['category1', 'score'], ascending=[True, False]).reset_index(drop=True)
  120. sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME
  121. sampled_df['dt_version'] = dt_version
  122. extend_df = sampled_df.merge(gh, on='category1')
  123. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  124. return result_df
  125. def rank_for_layer2(run_dt, run_hour, project, stats_table, rank_table):
  126. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  127. # 确保重跑时可获得一致结果
  128. dt_version = f'{run_dt}{run_hour}'
  129. np.random.seed(int(dt_version) + 1)
  130. # TODO: 计算账号间相关性
  131. ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量
  132. ## 求向量相关系数或cosine相似度
  133. ## 单个视频的RoVn加权求和
  134. # 当前实现基础版本:只在账号内求二级探索排序分
  135. sampled_dfs = []
  136. # 处理default逻辑(default-explore2)
  137. default_stats_df = stats_df.query('gh_id == "default"')
  138. sampled_df = default_stats_df.sample(n=SEND_N, weights=default_stats_df['score'])
  139. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  140. sampled_dfs.append(sampled_df)
  141. # 基础过滤for账号
  142. df = stats_df.query('day0_return > 100')
  143. # fallback to base if necessary
  144. base_strategy_df = get_last_strategy_result(
  145. project, rank_table, dt_version, BASE_GROUP_NAME)
  146. for gh_id in GH_IDS:
  147. if gh_id == 'default':
  148. continue
  149. sub_df = df.query(f'gh_id == "{gh_id}"')
  150. if len(sub_df) < SEND_N:
  151. LOGGER.warning(
  152. "gh_id[{}] rows[{}] not enough for layer2, fallback to base"
  153. .format(gh_id, len(sub_df)))
  154. sub_df = base_strategy_df.query(f'gh_id == "{gh_id}"')
  155. sub_df['score'] = sub_df['sort']
  156. sampled_df = sub_df.sample(n=SEND_N, weights=sub_df['score'])
  157. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  158. sampled_dfs.append(sampled_df)
  159. extend_df = pd.concat(sampled_dfs)
  160. extend_df['strategy_key'] = EXPLORE2_GROUP_NAME
  161. extend_df['dt_version'] = dt_version
  162. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  163. return result_df
  164. def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key):
  165. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  166. # TODO: support to set base manually
  167. dt_version = f'{run_dt}{run_hour}'
  168. # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间
  169. base_strategy_df = get_last_strategy_result(
  170. project, rank_table, dt_version, stg_key)
  171. default_stats_df = stats_df.query('gh_id == "default"')
  172. # 在账号内排序,决定该账号(包括default)的base利用内容
  173. # 排序过程中,确保当前base策略参与排序,因此先关联再过滤
  174. non_default_ids = list(filter(lambda x: x != 'default', GH_IDS))
  175. gh_ids_str = ','.join(f'"{x}"' for x in non_default_ids)
  176. stats_df = stats_df.query(f'gh_id in ({gh_ids_str})')
  177. stats_with_strategy_df = stats_df \
  178. .merge(
  179. base_strategy_df,
  180. on=['gh_id', 'video_id'],
  181. how='left') \
  182. .query('strategy_key.notna() or score > 0.1')
  183. # 合并default和分账号数据
  184. grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index()
  185. def set_top_n(group, n=2):
  186. group_sorted = group.sort_values(by='score', ascending=False)
  187. top_n = group_sorted.head(n)
  188. top_n['sort'] = range(1, len(top_n) + 1)
  189. return top_n
  190. ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N)
  191. ranked_df = ranked_df.reset_index(drop=True)
  192. ranked_df['strategy_key'] = stg_key
  193. ranked_df['dt_version'] = dt_version
  194. ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  195. return ranked_df
  196. def check_result_data(df):
  197. for gh_id in GH_IDS:
  198. for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME):
  199. sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"')
  200. n_records = len(sub_df)
  201. if n_records != SEND_N:
  202. raise Exception(f"Unexpected record count: {gh_id},{key},{n_records}")
  203. def postprocess_override_by_config(df, dt_version):
  204. config = json.load(open("configs/3rd_gh_reply_video.json"))
  205. override_data = {
  206. 'strategy_key': [],
  207. 'gh_id': [],
  208. 'sort': [],
  209. 'video_id': []
  210. }
  211. for gh_id in config:
  212. gh_config = config[gh_id]
  213. for key in gh_config:
  214. for video_config in gh_config[key]:
  215. # remove current
  216. position = video_config['position']
  217. video_id = video_config['video_id']
  218. df = df.drop(df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}" and sort == {position}').index)
  219. override_data['strategy_key'].append(key)
  220. override_data['gh_id'].append(gh_id)
  221. override_data['sort'].append(position)
  222. override_data['video_id'].append(video_id)
  223. n_records = len(override_data['strategy_key'])
  224. override_data['dt_version'] = [dt_version] * n_records
  225. override_data['score'] = [0.0] * n_records
  226. df_to_append = pd.DataFrame(override_data)
  227. df = pd.concat([df, df_to_append], ignore_index=True)
  228. return df
  229. def rank_for_base_designate(run_dt, run_hour, stg_key):
  230. dt_version = f'{run_dt}{run_hour}'
  231. ranked_df = pd.DataFrame() # 初始化一个空的 DataFrame
  232. for gh_id in GH_IDS:
  233. if gh_id in TARGET_GH_IDS:
  234. temp_df = pd.DataFrame({
  235. 'strategy_key': [stg_key],
  236. 'dt_version': [dt_version],
  237. 'gh_id': [gh_id],
  238. 'sort': [1],
  239. 'video_id': [13586800],
  240. 'score': [0.5]
  241. })
  242. else:
  243. temp_df = pd.DataFrame({
  244. 'strategy_key': [stg_key],
  245. 'dt_version': [dt_version],
  246. 'gh_id': [gh_id],
  247. 'sort': [1],
  248. 'video_id': [20463342],
  249. 'score': [0.5]
  250. })
  251. ranked_df = pd.concat([ranked_df, temp_df], ignore_index=True)
  252. return ranked_df
  253. def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
  254. dt_version = f'{run_dt}{run_hour}'
  255. dry_run = kwargs.get('dry_run', False)
  256. gh_df = get_and_update_gh_ids(run_dt)
  257. layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE, gh_df)
  258. # layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_RANK_RESULT_TABLE)
  259. # base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_RANK_RESULT_TABLE,BASE_GROUP_NAME)
  260. layer2_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE2_GROUP_NAME)
  261. base_rank = rank_for_base_designate(run_dt, run_hour, BASE_GROUP_NAME)
  262. final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True)
  263. final_rank_df = postprocess_override_by_config(final_rank_df, dt_version)
  264. check_result_data(final_rank_df)
  265. odps_instance = get_odps_instance(project)
  266. odps_ranked_df = odps.DataFrame(final_rank_df)
  267. video_df = get_dataframe_from_odps('videoods', 'wx_video')
  268. video_df['cover_url'] = video_df['cover_img_path'] + CDN_IMG_OPERATOR
  269. video_df = video_df['id', 'title', 'cover_url']
  270. final_df = odps_ranked_df.join(video_df, on=('video_id', 'id'))
  271. final_df = final_df.to_pandas()
  272. final_df = final_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'title', 'cover_url', 'score']]
  273. # reverse sending order
  274. final_df['sort'] = SEND_N + 1 - final_df['sort']
  275. if dry_run:
  276. print(final_df[['strategy_key', 'gh_id', 'sort', 'video_id', 'score', 'title']]
  277. .sort_values(by=['strategy_key', 'gh_id', 'sort']))
  278. return
  279. # save to ODPS
  280. t = odps_instance.get_table(ODPS_RANK_RESULT_TABLE)
  281. part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
  282. part_spec = ','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
  283. with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
  284. writer.write(list(final_df.itertuples(index=False)))
  285. # sync to MySQL
  286. data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)]
  287. data_columns = list(final_df.columns)
  288. mysql = MysqlHelper(CONFIG.MYSQL_CRAWLER_INFO)
  289. mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns)
  290. def main_loop():
  291. argparser = ArgumentParser()
  292. argparser.add_argument('-n', '--dry-run', action='store_true')
  293. argparser.add_argument('--run-at',help='assume to run at date and hour, yyyyMMddHH')
  294. args = argparser.parse_args()
  295. run_date = datetime.today()
  296. if args.run_at:
  297. run_date = datetime.strptime(args.run_at, "%Y%m%d%H")
  298. LOGGER.info(f"Assume to run at {run_date.strftime('%Y-%m-%d %H:00')}")
  299. try:
  300. now_date = datetime.today()
  301. LOGGER.info(f"开始执行: {datetime.strftime(now_date, '%Y-%m-%d %H:%M')}")
  302. last_date = run_date - timedelta(1)
  303. last_dt = last_date.strftime("%Y%m%d")
  304. # 查看当前天级更新的数据是否已准备好
  305. # 当前上游统计表为天级更新,但字段设计为兼容小时级
  306. h_data_count = check_data_partition(ODS_PROJECT, GH_REPLY_STATS_TABLE, last_dt, '00')
  307. if h_data_count > 0:
  308. LOGGER.info('上游数据表查询数据条数={},开始计算'.format(h_data_count))
  309. run_dt = run_date.strftime("%Y%m%d")
  310. run_hour = run_date.strftime("%H")
  311. LOGGER.info(f'run_dt: {run_dt}, run_hour: {run_hour}')
  312. build_and_transfer_data(run_dt, run_hour, ODS_PROJECT,
  313. dry_run=args.dry_run)
  314. LOGGER.info('数据更新完成')
  315. else:
  316. LOGGER.info("上游数据未就绪,等待60s")
  317. Timer(60, main_loop).start()
  318. return
  319. except Exception as e:
  320. LOGGER.error(f"数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  321. if CONFIG.ENV_TEXT == '开发环境':
  322. return
  323. send_msg_to_feishu(
  324. webhook=CONFIG.FEISHU_ROBOT['server_robot'].get('webhook'),
  325. key_word=CONFIG.FEISHU_ROBOT['server_robot'].get('key_word'),
  326. msg_text=f"rov-offline{CONFIG.ENV_TEXT} - 数据更新失败\n"
  327. f"exception: {e}\n"
  328. f"traceback: {traceback.format_exc()}"
  329. )
  330. if __name__ == '__main__':
  331. LOGGER.info("%s 开始执行" % os.path.basename(__file__))
  332. LOGGER.info(f"environment: {CONFIG.ENV_TEXT}")
  333. main_loop()