ad_users_data_update.py 3.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. import datetime
  2. import traceback
  3. from threading import Timer
  4. from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu
  5. from config import set_config
  6. from log import Log
  7. config_, _ = set_config()
  8. log_ = Log()
  9. redis_helper = RedisHelper()
  10. features = [
  11. 'apptype',
  12. 'group',
  13. 'sharerate_all',
  14. 'sharerate_ad'
  15. ]
  16. def predict_user_group_share_rate(project, table, dt, app_type):
  17. """预估用户组对应的有广告时分享率"""
  18. # 获取用户组特征
  19. user_group_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  20. user_group_df['apptype'] = user_group_df['apptype'].astype(int)
  21. user_group_df = user_group_df[user_group_df['apptype'] == app_type]
  22. user_group_df['sharerate_all'].fillna(0, inplace=True)
  23. user_group_df['sharerate_ad'].fillna(0, inplace=True)
  24. user_group_df['sharerate_all'] = user_group_df['sharerate_all'].astype(float)
  25. user_group_df['sharerate_ad'] = user_group_df['sharerate_ad'].astype(float)
  26. # 获取有广告时所有用户组近30天的分享率
  27. ad_all_group_share_rate = user_group_df[user_group_df['group'] == 'allmids']['sharerate_ad'].values[0]
  28. user_group_df = user_group_df[user_group_df['group'] != 'allmids']
  29. # 计算用户组有广告时分享率
  30. user_group_df['group_ad_share_rate'] = \
  31. user_group_df['sharerate_ad'] * float(ad_all_group_share_rate) / user_group_df['sharerate_all']
  32. user_group_df['group_ad_share_rate'].fillna(0, inplace=True)
  33. # 结果写入redis
  34. key_name = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{dt}"
  35. redis_data = {}
  36. for index, item in user_group_df.iterrows():
  37. redis_data[item['group']] = item['group_ad_share_rate']
  38. group_ad_share_rate_mean = user_group_df['group_ad_share_rate'].mean()
  39. redis_data['mean_group'] = group_ad_share_rate_mean
  40. if len(redis_data) > 0:
  41. redis_helper = RedisHelper()
  42. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  43. return user_group_df
  44. def timer_check():
  45. try:
  46. app_type = config_.APP_TYPE['VLOG']
  47. project = config_.ad_model_data['users_share_rate'].get('project')
  48. table = config_.ad_model_data['users_share_rate'].get('table')
  49. now_date = datetime.datetime.today()
  50. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  51. log_.info(f"now_date: {dt}")
  52. now_min = datetime.datetime.now().minute
  53. # 查看当前更新的数据是否已准备好
  54. data_count = data_check(project=project, table=table, dt=dt)
  55. if data_count > 0:
  56. log_.info(f"ad user group data count = {data_count}")
  57. # 数据准备好,进行更新
  58. predict_user_group_share_rate(project=project, table=table, dt=dt, app_type=app_type)
  59. log_.info(f"ad user group data update end!")
  60. elif now_min > 45:
  61. log_.info('ad user group data is None!')
  62. send_msg_to_feishu(
  63. webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
  64. key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
  65. msg_text=f"rov-offline{config_.ENV_TEXT} - 用户组分享率数据未准备好!\n"
  66. f"traceback: {traceback.format_exc()}"
  67. )
  68. else:
  69. # 数据没准备好,1分钟后重新检查
  70. Timer(60, timer_check).start()
  71. except Exception as e:
  72. log_.error(f"用户组分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  73. send_msg_to_feishu(
  74. webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
  75. key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
  76. msg_text=f"rov-offline{config_.ENV_TEXT} - 用户组分享率预测数据更新失败\n"
  77. f"exception: {e}\n"
  78. f"traceback: {traceback.format_exc()}"
  79. )
  80. if __name__ == '__main__':
  81. timer_check()