region_rule_rank_h_by24h.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. # -*- coding: utf-8 -*-
  2. # @ModuleName: region_rule_rank_h
  3. # @Author: Liqian
  4. # @Time: 2022/5/5 15:54
  5. # @Software: PyCharm
  6. import datetime
  7. import pandas as pd
  8. import math
  9. from odps import ODPS
  10. from threading import Timer
  11. from utils import RedisHelper, get_data_from_odps, filter_video_status
  12. from config import set_config
  13. from log import Log
  14. config_, _ = set_config()
  15. log_ = Log()
  16. region_code = {
  17. '河北省': '130000',
  18. '山西省': '140000',
  19. '辽宁省': '210000',
  20. '吉林省': '220000',
  21. '黑龙江省': '230000',
  22. '江苏省': '320000',
  23. '浙江省': '330000',
  24. '安徽省': '340000',
  25. '福建省': '350000',
  26. '江西省': '360000',
  27. '山东省': '370000',
  28. '河南省': '410000',
  29. '湖北省': '420000',
  30. '湖南省': '430000',
  31. '广东省': '440000',
  32. '海南省': '460000',
  33. '四川省': '510000',
  34. '贵州省': '520000',
  35. '云南省': '530000',
  36. '陕西省': '610000',
  37. '甘肃省': '620000',
  38. '青海省': '630000',
  39. '台湾省': '710000',
  40. '北京': '110000',
  41. '天津': '120000',
  42. '内蒙古': '150000',
  43. '上海': '310000',
  44. '广西': '450000',
  45. '重庆': '500000',
  46. '西藏': '540000',
  47. '宁夏': '640000',
  48. '新疆': '650000',
  49. '香港': '810000',
  50. '澳门': '820000',
  51. 'None': '-1'
  52. }
  53. features = [
  54. 'code', # 省份编码
  55. 'videoid',
  56. 'lastday_preview', # 昨日预曝光人数
  57. 'lastday_view', # 昨日曝光人数
  58. 'lastday_play', # 昨日播放人数
  59. 'lastday_share', # 昨日分享人数
  60. 'lastday_return', # 昨日回流人数
  61. 'lastday_preview_total', # 昨日预曝光次数
  62. 'lastday_view_total', # 昨日曝光次数
  63. 'lastday_play_total', # 昨日播放次数
  64. 'lastday_share_total', # 昨日分享次数
  65. 'platform_return',
  66. 'platform_preview',
  67. 'platform_preview_total',
  68. 'platform_show',
  69. 'platform_show_total',
  70. 'platform_view',
  71. 'platform_view_total',
  72. ]
  73. def get_rov_redis_key(now_date):
  74. """获取rov模型结果存放key"""
  75. redis_helper = RedisHelper()
  76. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  77. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  78. if not redis_helper.key_exists(key_name=key_name):
  79. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  80. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  81. return key_name
  82. def data_check(project, table, now_date):
  83. """检查数据是否准备好"""
  84. odps = ODPS(
  85. access_id=config_.ODPS_CONFIG['ACCESSID'],
  86. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  87. project=project,
  88. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  89. connect_timeout=3000,
  90. read_timeout=500000,
  91. pool_maxsize=1000,
  92. pool_connections=1000
  93. )
  94. try:
  95. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  96. sql = f'select * from {project}.{table} where dt = {dt}'
  97. with odps.execute_sql(sql=sql).open_reader() as reader:
  98. data_count = reader.count
  99. except Exception as e:
  100. data_count = 0
  101. return data_count
  102. def get_feature_data(project, table, now_date):
  103. """获取特征数据"""
  104. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  105. # dt = '2022041310'
  106. records = get_data_from_odps(date=dt, project=project, table=table)
  107. feature_data = []
  108. for record in records:
  109. item = {}
  110. for feature_name in features:
  111. item[feature_name] = record[feature_name]
  112. feature_data.append(item)
  113. feature_df = pd.DataFrame(feature_data)
  114. return feature_df
  115. def cal_score(df, param):
  116. """
  117. 计算score
  118. :param df: 特征数据
  119. :param param:
  120. :return:
  121. """
  122. # score计算公式: sharerate*backrate*logback*ctr
  123. # sharerate = lastday_share/(lastday_play+1000)
  124. # backrate = lastday_return/(lastday_share+10)
  125. # ctr = lastday_play/(lastday_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  126. # score = sharerate * backrate * LOG(lastday_return+1) * K2
  127. df = df.fillna(0)
  128. df['share_rate'] = df['lastday_share'] / (df['lastday_play'] + 1000)
  129. df['back_rate'] = df['lastday_return'] / (df['lastday_share'] + 10)
  130. df['log_back'] = (df['lastday_return'] + 1).apply(math.log)
  131. if param.get('view_type', None) == 'video-show':
  132. df['ctr'] = df['lastday_play'] / (df['platform_show'] + 1000)
  133. else:
  134. df['ctr'] = df['lastday_play'] / (df['lastday_preview'] + 1000)
  135. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  136. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  137. df['platform_return_rate'] = df['platform_return'] / df['lastday_return']
  138. df = df.sort_values(by=['score'], ascending=False)
  139. return df
  140. def video_rank(df, now_date, now_h, rule_key, param, region):
  141. """
  142. 获取符合进入召回源条件的视频
  143. :param df:
  144. :param now_date:
  145. :param now_h:
  146. :param rule_key: 小时级数据进入条件
  147. :param param: 小时级数据进入条件参数
  148. :param region: 所属地域
  149. :return:
  150. """
  151. redis_helper = RedisHelper()
  152. # 获取符合进入召回源条件的视频
  153. return_count = param.get('return_count', 1)
  154. score_value = param.get('score_rule', 0)
  155. platform_return_rate = param.get('platform_return_rate', 0)
  156. h_recall_df = df[(df['lastday_return'] >= return_count) & (df['score'] >= score_value)
  157. & (df['platform_return_rate'] >= platform_return_rate)]
  158. # videoid重复时,保留分值高
  159. h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
  160. h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  161. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  162. h_recall_videos = h_recall_df['videoid'].to_list()
  163. log_.info(f'day_recall videos count = {len(h_recall_videos)}')
  164. # 视频状态过滤
  165. filtered_videos = filter_video_status(h_recall_videos)
  166. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  167. # 写入对应的redis
  168. h_video_ids = []
  169. day_recall_result = {}
  170. for video_id in filtered_videos:
  171. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  172. # print(score)
  173. day_recall_result[int(video_id)] = float(score)
  174. h_video_ids.append(int(video_id))
  175. day_recall_key_name = \
  176. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}.{rule_key}." \
  177. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  178. if len(day_recall_result) > 0:
  179. redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=23 * 3600)
  180. # 清空线上过滤应用列表
  181. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{region}.{rule_key}")
  182. # 与其他召回视频池去重,存入对应的redis
  183. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
  184. def rank_by_24h(project, table, now_date, now_h, rule_params, region_code_list):
  185. # 获取特征数据
  186. feature_df = get_feature_data(project=project, table=table, now_date=now_date)
  187. # rank
  188. for key, value in rule_params.items():
  189. log_.info(f"rule = {key}, param = {value}")
  190. for region in region_code_list:
  191. log_.info(f"region = {region}")
  192. # 计算score
  193. region_df = feature_df[feature_df['code'] == region]
  194. log_.info(f'region_df count = {len(region_df)}')
  195. score_df = cal_score(df=region_df, param=value)
  196. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
  197. # to-csv
  198. score_filename = f"score_24h_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  199. score_df.to_csv(f'./data/{score_filename}')
  200. # to-logs
  201. log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
  202. "region_code": region,
  203. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H,
  204. "rule_key": key,
  205. "score_df": score_df[['videoid', 'score']]})
  206. def dup_to_redis(h_video_ids, now_date, now_h, rule_key, region):
  207. """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
  208. redis_helper = RedisHelper()
  209. # ##### 去重小程序天级更新结果,并另存为redis中
  210. day_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_DAY}rule2.{datetime.datetime.strftime(now_date, '%Y%m%d')}"
  211. if redis_helper.key_exists(key_name=day_key_name):
  212. day_data = redis_helper.get_all_data_from_zset(key_name=day_key_name, with_scores=True)
  213. log_.info(f'day data count = {len(day_data)}')
  214. day_dup = {}
  215. for video_id, score in day_data:
  216. if int(video_id) not in h_video_ids:
  217. day_dup[int(video_id)] = score
  218. h_video_ids.append(int(video_id))
  219. log_.info(f"day data dup count = {len(day_dup)}")
  220. day_dup_key_name = \
  221. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_DAY_24H}{region}.{rule_key}." \
  222. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  223. if len(day_dup) > 0:
  224. redis_helper.add_data_with_zset(key_name=day_dup_key_name, data=day_dup, expire_time=23 * 3600)
  225. # ##### 去重小程序模型更新结果,并另存为redis中
  226. model_key_name = get_rov_redis_key(now_date=now_date)
  227. model_data = redis_helper.get_all_data_from_zset(key_name=model_key_name, with_scores=True)
  228. log_.info(f'model data count = {len(model_data)}')
  229. model_data_dup = {}
  230. for video_id, score in model_data:
  231. if int(video_id) not in h_video_ids:
  232. model_data_dup[int(video_id)] = score
  233. h_video_ids.append(int(video_id))
  234. log_.info(f"model data dup count = {len(model_data_dup)}")
  235. model_data_dup_key_name = \
  236. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_24H}{region}.{rule_key}." \
  237. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  238. if len(model_data_dup) > 0:
  239. redis_helper.add_data_with_zset(key_name=model_data_dup_key_name, data=model_data_dup, expire_time=23 * 3600)
  240. def h_rank_bottom(now_date, now_h, rule_key, region_code_list):
  241. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  242. log_.info(f"rule_key = {rule_key}")
  243. # 获取rov模型结果
  244. redis_helper = RedisHelper()
  245. if now_h == 0:
  246. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  247. redis_h = 23
  248. else:
  249. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  250. redis_h = now_h - 1
  251. # 以上一小时的地域分组数据作为当前小时的数据
  252. key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H
  253. for region in region_code_list:
  254. log_.info(f"region = {region}")
  255. key_name = f"{key_prefix}{region}.{rule_key}.{redis_dt}.{redis_h}"
  256. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  257. final_data = dict()
  258. h_video_ids = []
  259. for video_id, score in initial_data:
  260. final_data[video_id] = score
  261. h_video_ids.append(int(video_id))
  262. # 存入对应的redis
  263. final_key_name = \
  264. f"{key_prefix}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  265. if len(final_data) > 0:
  266. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  267. # 清空线上过滤应用列表
  268. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER_24H}{region}.{rule_key}")
  269. # 与其他召回视频池去重,存入对应的redis
  270. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key, region=region)
  271. def h_timer_check():
  272. rule_params = config_.RULE_PARAMS_REGION_24H
  273. project = config_.PROJECT_REGION_24H
  274. table = config_.TABLE_REGION_24H
  275. region_code_list = [code for region, code in region_code.items()]
  276. now_date = datetime.datetime.today()
  277. now_h = datetime.datetime.now().hour
  278. now_min = datetime.datetime.now().minute
  279. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  280. # 查看当天更新的数据是否已准备好
  281. h_data_count = data_check(project=project, table=table, now_date=now_date)
  282. if h_data_count > 0:
  283. log_.info(f'24h_data_count = {h_data_count}')
  284. # 数据准备好,进行更新
  285. rank_by_24h(now_date=now_date, now_h=now_h, rule_params=rule_params,
  286. project=project, table=table, region_code_list=region_code_list)
  287. elif now_min > 50:
  288. log_.info('24h_recall data is None, use bottom data!')
  289. for key, _ in rule_params.items():
  290. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key, region_code_list=region_code_list)
  291. else:
  292. # 数据没准备好,1分钟后重新检查
  293. Timer(60, h_timer_check).start()
  294. if __name__ == '__main__':
  295. h_timer_check()