rule_rank_h_by_24h.py 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221
  1. import pandas as pd
  2. import math
  3. from odps import ODPS
  4. from threading import Timer
  5. from datetime import datetime, timedelta
  6. from get_data import get_data_from_odps
  7. from db_helper import RedisHelper
  8. from config import set_config
  9. from log import Log
  10. config_, _ = set_config()
  11. log_ = Log()
  12. features = [
  13. 'videoid',
  14. 'preview人数', # 过去24h预曝光人数
  15. 'view人数', # 过去24h曝光人数
  16. 'play人数', # 过去24h播放人数
  17. 'share人数', # 过去24h分享人数
  18. '回流人数', # 过去24h分享,过去24h回流人数
  19. 'preview次数', # 过去24h预曝光次数
  20. 'view次数', # 过去24h曝光次数
  21. 'play次数', # 过去24h播放次数
  22. 'share次数', # 过去24h分享次数
  23. ]
  24. def get_rov_redis_key(now_date):
  25. # 获取rov模型结果存放key
  26. redis_helper = RedisHelper()
  27. now_dt = datetime.strftime(now_date, '%Y%m%d')
  28. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  29. if not redis_helper.key_exists(key_name=key_name):
  30. pre_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
  31. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  32. return key_name
  33. def h_data_check(project, table, now_date):
  34. """检查数据是否准备好"""
  35. odps = ODPS(
  36. access_id=config_.ODPS_CONFIG['ACCESSID'],
  37. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  38. project=project,
  39. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  40. connect_timeout=3000,
  41. read_timeout=500000,
  42. pool_maxsize=1000,
  43. pool_connections=1000
  44. )
  45. try:
  46. dt = datetime.strftime(now_date, '%Y%m%d%H')
  47. sql = f'select * from {project}.{table} where dt = {dt}'
  48. with odps.execute_sql(sql=sql).open_reader() as reader:
  49. data_count = reader.count
  50. except Exception as e:
  51. data_count = 0
  52. return data_count
  53. def get_feature_data(now_date, project, table):
  54. """获取特征数据"""
  55. dt = datetime.strftime(now_date, '%Y%m%d%H')
  56. # dt = '20220425'
  57. records = get_data_from_odps(date=dt, project=project, table=table)
  58. feature_data = []
  59. for record in records:
  60. item = {}
  61. for feature_name in features:
  62. item[feature_name] = record[feature_name]
  63. feature_data.append(item)
  64. feature_df = pd.DataFrame(feature_data)
  65. return feature_df
  66. def cal_score1(df):
  67. # score1计算公式: score = 回流人数/(view人数+10000)
  68. df = df.fillna(0)
  69. df['score'] = df['回流人数'] / (df['view人数'] + 1000)
  70. df = df.sort_values(by=['score'], ascending=False)
  71. return df
  72. def cal_score2(df):
  73. # score2计算公式: score = share次数/(view+1000)+0.01*return/(share次数+100)
  74. df = df.fillna(0)
  75. df['share_rate'] = df['share次数'] / (df['view人数'] + 1000)
  76. df['back_rate'] = df['回流人数'] / (df['share次数'] + 100)
  77. df['score'] = df['share_rate'] + 0.01 * df['back_rate']
  78. df = df.sort_values(by=['score'], ascending=False)
  79. return df
  80. def video_rank_h(df, now_date, now_h, rule_key, param):
  81. """
  82. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  83. :param df:
  84. :param now_date:
  85. :param now_h:
  86. :param rule_key: 天级规则数据进入条件
  87. :param param: 天级规则数据进入条件参数
  88. :return:
  89. """
  90. # 获取rov模型结果
  91. redis_helper = RedisHelper()
  92. key_name = get_rov_redis_key(now_date=now_date)
  93. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  94. log_.info(f'initial data count = {len(initial_data)}')
  95. # 获取符合进入召回源条件的视频
  96. return_count = param.get('return_count')
  97. if return_count:
  98. day_recall_df = df[df['回流人数'] > return_count]
  99. else:
  100. day_recall_df = df
  101. day_recall_videos = day_recall_df['videoid'].to_list()
  102. log_.info(f'h_by24h_recall videos count = {len(day_recall_videos)}')
  103. # 写入对应的redis
  104. now_dt = datetime.strftime(now_date, '%Y%m%d')
  105. day_video_ids = []
  106. day_recall_result = {}
  107. for video_id in day_recall_videos:
  108. score = day_recall_df[day_recall_df['videoid'] == video_id]['score']
  109. day_recall_result[int(video_id)] = float(score)
  110. day_video_ids.append(int(video_id))
  111. day_recall_key_name = \
  112. f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}{rule_key}.{now_dt}.{now_h}"
  113. if len(day_recall_result) > 0:
  114. redis_helper.add_data_with_zset(key_name=day_recall_key_name, data=day_recall_result, expire_time=23 * 3600)
  115. # 清空线上过滤应用列表
  116. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{rule_key}")
  117. # 去重更新rov模型结果,并另存为redis中
  118. initial_data_dup = {}
  119. for video_id, score in initial_data:
  120. if int(video_id) not in day_video_ids:
  121. initial_data_dup[int(video_id)] = score
  122. log_.info(f"initial data dup count = {len(initial_data_dup)}")
  123. initial_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_DUP_24H}{rule_key}.{now_dt}.{now_h}"
  124. if len(initial_data_dup) > 0:
  125. redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
  126. def rank_by_h(now_date, now_h, rule_params, project, table):
  127. # 获取特征数据
  128. feature_df = get_feature_data(now_date=now_date, project=project, table=table)
  129. # rank
  130. for key, value in rule_params.items():
  131. log_.info(f"rule = {key}, param = {value}")
  132. # 计算score
  133. cal_score_func = value.get('cal_score_func', 1)
  134. if cal_score_func == 2:
  135. score_df = cal_score2(df=feature_df)
  136. else:
  137. score_df = cal_score1(df=feature_df)
  138. video_rank_h(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value)
  139. # to-csv
  140. score_filename = f"score_by24h_{key}_{datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  141. score_df.to_csv(f'./data/{score_filename}')
  142. # to-logs
  143. log_.info({"date": datetime.strftime(now_date, '%Y%m%d%H'),
  144. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_24H,
  145. "rule_key": key,
  146. "score_df": score_df[['videoid', 'score']]})
  147. def h_rank_bottom(now_date, now_h, rule_key):
  148. """未按时更新数据,用模型召回数据作为当前的数据"""
  149. log_.info(f"rule_key = {rule_key}")
  150. # 获取rov模型结果
  151. redis_helper = RedisHelper()
  152. if now_h == 0:
  153. redis_dt = datetime.strftime(now_date - timedelta(days=1), '%Y%m%d')
  154. redis_h = 23
  155. else:
  156. redis_dt = datetime.strftime(now_date, '%Y%m%d')
  157. redis_h = now_h - 1
  158. key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_24H, config_.RECALL_KEY_NAME_PREFIX_DUP_24H]
  159. for key_prefix in key_prefix_list:
  160. key_name = f"{key_prefix}{rule_key}.{redis_dt}.{redis_h}"
  161. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  162. final_data = dict()
  163. for video_id, score in initial_data:
  164. final_data[video_id] = score
  165. # 存入对应的redis
  166. final_key_name = \
  167. f"{key_prefix}{rule_key}.{datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  168. if len(final_data) > 0:
  169. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  170. # 清空线上过滤应用列表
  171. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{rule_key}")
  172. def h_timer_check():
  173. project = config_.PROJECT_24H
  174. table = config_.TABLE_24H
  175. rule_params = config_.RULE_PARAMS_24H
  176. now_date = datetime.today()
  177. log_.info(f"now_date: {datetime.strftime(now_date, '%Y%m%d%H')}")
  178. now_min = datetime.now().minute
  179. now_h = datetime.now().hour
  180. # 查看当前天级更新的数据是否已准备好
  181. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  182. if h_data_count > 0:
  183. log_.info(f'h_by24h_data_count = {h_data_count}')
  184. # 数据准备好,进行更新
  185. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params, project=project, table=table)
  186. elif now_min > 50:
  187. log_.info('h_by24h_recall data is None!')
  188. for key, _ in rule_params.items():
  189. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  190. else:
  191. # 数据没准备好,1分钟后重新检查
  192. Timer(60, h_timer_check).start()
  193. if __name__ == '__main__':
  194. h_timer_check()