ad_threshold_auto_update.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. import datetime
  2. import traceback
  3. import numpy as np
  4. from threading import Timer
  5. import pandas as pd
  6. from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu
  7. from config import set_config
  8. from log import Log
  9. config_, _ = set_config()
  10. log_ = Log()
  11. redis_helper = RedisHelper()
  12. features = [
  13. 'apptype',
  14. 'adcode',
  15. 'visit_uv_today',
  16. 'visit_uv_yesterday',
  17. 'b'
  18. ]
  19. def get_threshold_record_new(ad_abtest_abcode_config, feature_df, threshold_record):
  20. """根据活跃人数变化计算新的阈值参数"""
  21. robot_msg_record = []
  22. threshold_record_new = threshold_record.copy()
  23. for app_type, config_params in ad_abtest_abcode_config.items():
  24. # 获取对应端的数据, 更新阈值参数
  25. # log_.info(f"app_type = {app_type}")
  26. temp_df = feature_df[feature_df['apptype'] == app_type]
  27. ab_test_id = config_params.get('ab_test_id')
  28. ab_test_config = config_params.get('ab_test_config')
  29. threshold_update = config_params.get('threshold_update')
  30. for config_name, ab_code_list in ab_test_config.items():
  31. ad_abtest_tag = f"{ab_test_id}-{config_name}"
  32. # log_.info(f"ad_abtest_tag = {ad_abtest_tag}")
  33. if len(ab_code_list) > 0:
  34. b_mean = temp_df[temp_df['adcode'].isin(ab_code_list)]['b'].mean()
  35. if b_mean < 0:
  36. # 阈值按梯度调高
  37. b_i = (b_mean * -1)//0.05 + 1
  38. threshold_param_new = float(threshold_record.get(ad_abtest_tag)) + threshold_update * b_i
  39. elif b_mean > 0.1:
  40. # 阈值调低
  41. threshold_param_new = float(threshold_record.get(ad_abtest_tag)) - threshold_update
  42. b_i = 1
  43. else:
  44. continue
  45. if threshold_param_new > 0:
  46. threshold_record_new[ad_abtest_tag] = threshold_param_new
  47. robot_msg_record.append({'appType': app_type, 'ad_abtest_tag': ad_abtest_tag,
  48. 'b_i': int(b_i), 'gradient': round(threshold_update, 4),
  49. 'param_old': round(float(threshold_record.get(ad_abtest_tag)), 4),
  50. 'param_new': round(threshold_param_new, 4)})
  51. return threshold_record_new, robot_msg_record
  52. def update_threshold(threshold_record_old, threshold_record_new):
  53. """更新阈值"""
  54. ad_mid_group_list = [group for class_key, group_list in config_.AD_MID_GROUP.items()
  55. for group in group_list]
  56. ad_mid_group_list.append("mean_group")
  57. ad_mid_group_list = list(set(ad_mid_group_list))
  58. for ad_abtest_tag, threshold_param_new in threshold_record_new.items():
  59. threshold_param_old = threshold_record_old.get(ad_abtest_tag)
  60. log_.info(f"ad_abtest_tag = {ad_abtest_tag}, "
  61. f"threshold_param_old = {threshold_param_old}, threshold_param_new = {threshold_param_new}")
  62. tag_list = ad_abtest_tag.split('-')
  63. for group_key in ad_mid_group_list:
  64. # 获取对应的阈值
  65. key_name = f"{config_.KEY_NAME_PREFIX_AD_THRESHOLD}{tag_list[0]}:{tag_list[1]}:{group_key}"
  66. threshold_old = redis_helper.get_data_from_redis(key_name=key_name)
  67. if threshold_old is None:
  68. continue
  69. # 计算新的阈值
  70. threshold_new = float(threshold_old) / threshold_param_old * threshold_param_new
  71. log_.info(f"ad_abtest_tag = {ad_abtest_tag}, group_key = {group_key}, "
  72. f"threshold_old = {threshold_old}, threshold_new = {threshold_new}")
  73. # 更新redis
  74. redis_helper.set_data_to_redis(key_name=key_name, value=threshold_new)
  75. def update_ad_abtest_threshold(project, table, dt, ad_abtest_abcode_config):
  76. # 获取当前阈值参数值
  77. threshold_record = redis_helper.get_data_from_redis(key_name=config_.KEY_NAME_PREFIX_AD_THRESHOLD_RECORD)
  78. threshold_record = eval(threshold_record)
  79. log_.info(f"threshold_record = {threshold_record}")
  80. # 获取uv数据
  81. feature_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  82. feature_df['apptype'] = feature_df['apptype'].astype(int)
  83. feature_df['b'] = feature_df['b'].astype(float)
  84. # 根据活跃人数变化计算新的阈值参数
  85. threshold_record_new, robot_msg_record = get_threshold_record_new(
  86. ad_abtest_abcode_config=ad_abtest_abcode_config, feature_df=feature_df, threshold_record=threshold_record)
  87. log_.info(f"threshold_record_new = {threshold_record_new}")
  88. # 更新阈值
  89. update_threshold(threshold_record_old=threshold_record, threshold_record_new=threshold_record_new)
  90. # 更新阈值参数
  91. redis_helper.set_data_to_redis(key_name=config_.KEY_NAME_PREFIX_AD_THRESHOLD_RECORD,
  92. value=str(threshold_record_new))
  93. return robot_msg_record
  94. def timer_check():
  95. try:
  96. ad_abtest_abcode_config = config_.AD_ABTEST_ABCODE_CONFIG
  97. project = config_.AD_THRESHOLD_AUTO_UPDATE_DATA.get('project')
  98. table = config_.AD_THRESHOLD_AUTO_UPDATE_DATA.get('table')
  99. now_date = datetime.datetime.today()
  100. now_min = datetime.datetime.now().minute
  101. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  102. dt = datetime.datetime.strftime(now_date - datetime.timedelta(hours=1), '%Y%m%d%H')
  103. # 查看当前更新的数据是否已准备好
  104. data_count = data_check(project=project, table=table, dt=dt)
  105. if data_count > 0:
  106. log_.info(f"data count = {data_count}")
  107. # 数据准备好,进行更新
  108. robot_msg_record = update_ad_abtest_threshold(
  109. project=project, table=table, dt=dt, ad_abtest_abcode_config=ad_abtest_abcode_config)
  110. if len(robot_msg_record) > 0:
  111. robot_msg_record_text = "\n".join([str(item) for item in robot_msg_record])
  112. msg = f"threshold_param_update: \n{robot_msg_record_text.replace(', ', ', ')}\n"
  113. else:
  114. msg = "无需更新!\n"
  115. send_msg_to_feishu(
  116. webhook=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('webhook'),
  117. key_word=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('key_word'),
  118. msg_text=f"rov-offline{config_.ENV_TEXT} - 阈值更新完成!\n{msg}"
  119. )
  120. log_.info(f"threshold update end!")
  121. elif now_min > 30:
  122. log_.info('threshold update data is None!')
  123. send_msg_to_feishu(
  124. webhook=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('webhook'),
  125. key_word=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('key_word'),
  126. msg_text=f"rov-offline{config_.ENV_TEXT} - 阈值更新相关数据未准备好!\n"
  127. )
  128. else:
  129. # 数据没准备好,1分钟后重新检查
  130. Timer(60, timer_check).start()
  131. except Exception as e:
  132. log_.error(f"阈值更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  133. send_msg_to_feishu(
  134. webhook=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('webhook'),
  135. key_word=config_.FEISHU_ROBOT['ad_threshold_auto_update_robot'].get('key_word'),
  136. msg_text=f"rov-offline{config_.ENV_TEXT} - 阈值更新失败\n"
  137. f"exception: {e}\n"
  138. f"traceback: {traceback.format_exc()}"
  139. )
  140. if __name__ == '__main__':
  141. timer_check()