ad_video_data_update.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. import datetime
  2. import traceback
  3. import multiprocessing
  4. from threading import Timer
  5. from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
  6. from config import set_config
  7. from log import Log
  8. config_, _ = set_config()
  9. log_ = Log()
  10. redis_helper = RedisHelper()
  11. features = [
  12. 'apptype',
  13. 'videoid',
  14. 'sharerate_all',
  15. 'sharerate_ad'
  16. ]
  17. features_new = [
  18. 'apptype',
  19. 'videoid',
  20. 'adrate',
  21. 'sharerate',
  22. 'adrate_share'
  23. ]
  24. def get_top10_abnormal_videos_return(dt, filter_param):
  25. """获取昨日各端top10中的异常视频(裂变视频)"""
  26. abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
  27. abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
  28. abnormal_video_features = [
  29. 'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
  30. ]
  31. data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
  32. top10_abnormal_videos = {}
  33. if data_count > 0:
  34. abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
  35. features=abnormal_video_features, dt=dt)
  36. abnormal_video_df['multiple'].fillna(0, inplace=True)
  37. abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
  38. abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
  39. abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
  40. abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
  41. abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
  42. app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
  43. for app_type in app_type_list:
  44. app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
  45. app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
  46. # print(app_type_df)
  47. temp_video_id_list = []
  48. for index, item in app_type_df.iterrows():
  49. # print(item['rank'], item['videoid'], item['multiple'])
  50. if item['multiple'] > filter_param:
  51. # print(item['videoid'], item['multiple'])
  52. abnormal_video_id_list = temp_video_id_list.copy()
  53. abnormal_video_id_list.append(int(item['videoid']))
  54. top10_abnormal_videos[app_type] = abnormal_video_id_list
  55. temp_video_id_list.append(int(item['videoid']))
  56. else:
  57. temp_video_id_list.append(int(item['videoid']))
  58. # print(top10_abnormal_videos)
  59. log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
  60. return top10_abnormal_videos
  61. def predict_video_share_rate(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
  62. """预估视频有广告时分享率"""
  63. # 获取对应的视频特征
  64. video_df = video_initial_df.copy()
  65. video_df['apptype'] = video_df['apptype'].astype(int)
  66. video_df = video_df[video_df['apptype'] == int(data_param)]
  67. log_.info(f"video_df length: {len(video_df)}")
  68. video_df['sharerate_all'].fillna(0, inplace=True)
  69. video_df['sharerate_ad'].fillna(0, inplace=True)
  70. video_df['sharerate_all'] = video_df['sharerate_all'].astype(float)
  71. video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float)
  72. # 获取有广告时所有视频近30天的分享率
  73. ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad'].values[0]
  74. video_df = video_df[video_df['videoid'] != 'allvideos']
  75. # 剔除异常视频数据
  76. video_df['videoid'] = video_df['videoid'].astype(int)
  77. top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
  78. # print(int(data_param), len(video_df), top10_abnormal_video_ids)
  79. if top10_abnormal_video_ids is not None:
  80. video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
  81. # print(len(video_df))
  82. # 计算视频有广告时分享率
  83. video_df['video_ad_share_rate'] = \
  84. video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all']
  85. video_df['video_ad_share_rate'].fillna(0, inplace=True)
  86. # log_.info(f"video_df: {video_df}")
  87. video_df = video_df[video_df['video_ad_share_rate'] != 0]
  88. log_.info(f"video_df filtered 0 length: {len(video_df)}")
  89. # 结果写入redis
  90. key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}"
  91. redis_data = {}
  92. for index, item in video_df.iterrows():
  93. redis_data[int(item['videoid'])] = item['video_ad_share_rate']
  94. group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
  95. redis_data[-1] = group_ad_share_rate_mean
  96. # 异常视频给定值:mean/3
  97. if top10_abnormal_video_ids is not None:
  98. abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1)
  99. print(data_key, data_param, abnormal_video_param)
  100. for abnormal_video_id in top10_abnormal_video_ids:
  101. print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param)
  102. redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param
  103. log_.info(f"redis_data count: {len(redis_data)}")
  104. if len(redis_data) > 0:
  105. redis_helper = RedisHelper()
  106. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  107. return video_df
  108. def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
  109. """预估视频有广告时分享率"""
  110. # 获取视频特征
  111. video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
  112. for data_key, data_param in update_params.items():
  113. log_.info(f"data_key = {data_key} update start...")
  114. predict_video_share_rate(video_initial_df=video_initial_df, dt=dt, data_key=data_key, data_param=data_param,
  115. top10_abnormal_videos=top10_abnormal_videos)
  116. log_.info(f"data_key = {data_key} update end!")
  117. def predict_video_share_rate_new(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
  118. """预估视频有广告时被分享率"""
  119. # 获取对应的视频特征
  120. video_df = video_initial_df.copy()
  121. video_df['apptype'] = video_df['apptype'].astype(int)
  122. video_df = video_df[video_df['apptype'] == int(data_param)]
  123. log_.info(f"video_df length: {len(video_df)}")
  124. video_df['adrate'].fillna(0, inplace=True)
  125. video_df['sharerate'].fillna(0, inplace=True)
  126. video_df['adrate_share'].fillna(0, inplace=True)
  127. video_df['adrate'] = video_df['adrate'].astype(float)
  128. video_df['sharerate'] = video_df['sharerate'].astype(float)
  129. video_df['adrate_share'] = video_df['adrate_share'].astype(float)
  130. # 剔除异常视频数据
  131. video_df['videoid'] = video_df['videoid'].astype(int)
  132. top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
  133. # print(int(data_param), len(video_df), top10_abnormal_video_ids)
  134. if top10_abnormal_video_ids is not None:
  135. video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
  136. # print(len(video_df))
  137. # 计算视频有广告时被分享率
  138. video_df = video_df[video_df['adrate'] != 0]
  139. video_df['video_ad_share_rate'] = \
  140. video_df['adrate_share'] * video_df['sharerate'] / video_df['adrate']
  141. video_df['video_ad_share_rate'].fillna(0, inplace=True)
  142. # log_.info(f"video_df: {video_df}")
  143. video_df = video_df[video_df['video_ad_share_rate'] != 0]
  144. log_.info(f"video_df filtered 0 length: {len(video_df)}")
  145. # 结果写入redis
  146. key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}"
  147. redis_data = {}
  148. for index, item in video_df.iterrows():
  149. redis_data[int(item['videoid'])] = item['video_ad_share_rate']
  150. group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
  151. redis_data[-1] = group_ad_share_rate_mean
  152. # 异常视频给定值:mean/3
  153. if top10_abnormal_video_ids is not None:
  154. abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1)
  155. print(data_key, data_param, abnormal_video_param)
  156. for abnormal_video_id in top10_abnormal_video_ids:
  157. print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param)
  158. redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param
  159. log_.info(f"redis_data count: {len(redis_data)}")
  160. if len(redis_data) > 0:
  161. redis_helper = RedisHelper()
  162. redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
  163. return video_df
  164. def update_videos_data_new(project, table, dt, update_params, top10_abnormal_videos):
  165. """预估视频有广告时分享率"""
  166. # 获取视频特征
  167. video_initial_df = get_feature_data(project=project, table=table, features=features_new, dt=dt)
  168. for data_key, data_param in update_params.items():
  169. log_.info(f"data_key = {data_key} update start...")
  170. predict_video_share_rate_new(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
  171. data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
  172. log_.info(f"data_key = {data_key} update end!")
  173. def timer_check(dt, video_key, video_params, top10_abnormal_videos):
  174. log_.info(f"video_key = {video_key}")
  175. project = config_.ad_model_data[video_key].get('project')
  176. table = config_.ad_model_data[video_key].get('table')
  177. # 查看当前更新的数据是否已准备好
  178. data_count = data_check(project=project, table=table, dt=dt)
  179. if data_count > 0:
  180. log_.info(f"ad video data count = {data_count}")
  181. # 数据准备好,进行更新
  182. if video_key == 'videos_data_alladtype':
  183. update_videos_data_new(project=project, table=table, dt=dt, update_params=video_params,
  184. top10_abnormal_videos=top10_abnormal_videos)
  185. else:
  186. update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
  187. top10_abnormal_videos=top10_abnormal_videos)
  188. log_.info(f"video_key = {video_key} ad video data update end!")
  189. msg_list = [
  190. f"env: rov-offline {config_.ENV_TEXT}",
  191. f"video_key: {video_key}",
  192. f"now_date: {dt}",
  193. f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
  194. ]
  195. send_msg_to_feishu_new(
  196. webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
  197. key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
  198. title='广告模型视频分享率预测数据更新完成',
  199. msg_list=msg_list
  200. )
  201. else:
  202. # 数据没准备好,1分钟后重新检查
  203. Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
  204. def main():
  205. try:
  206. now_date = datetime.datetime.today()
  207. dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  208. log_.info(f"now_date: {dt}")
  209. # 获取昨天top10中的异常视频(裂变视频)
  210. top10_abnormal_videos = get_top10_abnormal_videos_return(
  211. dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
  212. )
  213. update_params = config_.AD_VIDEO_DATA_PARAMS
  214. pool = multiprocessing.Pool(processes=len(update_params))
  215. for video_key, video_params in update_params.items():
  216. pool.apply_async(
  217. func=timer_check,
  218. args=(dt, video_key, video_params, top10_abnormal_videos)
  219. )
  220. pool.close()
  221. pool.join()
  222. # for video_key, video_params in update_params.items():
  223. # timer_check(dt, video_key, video_params, top10_abnormal_videos)
  224. except Exception as e:
  225. log_.error(f"视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  226. msg_list = [
  227. f"env: rov-offline {config_.ENV_TEXT}",
  228. f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
  229. f"exception: {e}",
  230. f"traceback: {traceback.format_exc()}",
  231. ]
  232. send_msg_to_feishu_new(
  233. webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
  234. key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
  235. title='广告模型视频分享率预测数据更新失败',
  236. msg_list=msg_list
  237. )
  238. if __name__ == '__main__':
  239. # timer_check()
  240. main()