region_rule_rank_h.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. # -*- coding: utf-8 -*-
  2. # @ModuleName: region_rule_rank_h
  3. # @Author: Liqian
  4. # @Time: 2022/5/5 15:54
  5. # @Software: PyCharm
  6. import datetime
  7. import pandas as pd
  8. import math
  9. from odps import ODPS
  10. from threading import Timer
  11. from utils import MysqlHelper, RedisHelper, get_data_from_odps, filter_video_status
  12. from config import set_config
  13. from log import Log
  14. config_, _ = set_config()
  15. log_ = Log()
  16. region_code = config_.REGION_CODE
  17. features = [
  18. 'code',
  19. 'videoid',
  20. 'lastonehour_preview', # 过去1小时预曝光人数
  21. 'lastonehour_view', # 过去1小时曝光人数
  22. 'lastonehour_play', # 过去1小时播放人数
  23. 'lastonehour_share', # 过去1小时分享人数
  24. 'lastonehour_return', # 过去1小时分享,过去1小时回流人数
  25. 'lastonehour_preview_total', # 过去1小时预曝光次数
  26. 'lastonehour_view_total', # 过去1小时曝光次数
  27. 'lastonehour_play_total', # 过去1小时播放次数
  28. 'lastonehour_share_total', # 过去1小时分享次数
  29. 'platform_return',
  30. 'lastonehour_show', # 不区分地域
  31. 'lastonehour_show_region', # 地域分组
  32. ]
  33. def get_region_code(region):
  34. """获取省份对应的code"""
  35. mysql_helper = MysqlHelper(mysql_info=config_.MYSQL_INFO)
  36. sql = f"SELECT ad_code FROM region_adcode WHERE parent_id = 0 AND region LIKE '{region}%';"
  37. ad_code = mysql_helper.get_data(sql=sql)
  38. return ad_code[0][0]
  39. def h_data_check(project, table, now_date):
  40. """检查数据是否准备好"""
  41. odps = ODPS(
  42. access_id=config_.ODPS_CONFIG['ACCESSID'],
  43. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  44. project=project,
  45. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  46. connect_timeout=3000,
  47. read_timeout=500000,
  48. pool_maxsize=1000,
  49. pool_connections=1000
  50. )
  51. try:
  52. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  53. sql = f'select * from {project}.{table} where dt = {dt}'
  54. with odps.execute_sql(sql=sql).open_reader() as reader:
  55. data_count = reader.count
  56. except Exception as e:
  57. data_count = 0
  58. return data_count
  59. def get_rov_redis_key(now_date):
  60. """获取rov模型结果存放key"""
  61. redis_helper = RedisHelper()
  62. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  63. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  64. if not redis_helper.key_exists(key_name=key_name):
  65. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  66. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  67. return key_name
  68. def get_feature_data(project, table, now_date):
  69. """获取特征数据"""
  70. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  71. # dt = '2022041310'
  72. records = get_data_from_odps(date=dt, project=project, table=table)
  73. feature_data = []
  74. for record in records:
  75. item = {}
  76. for feature_name in features:
  77. item[feature_name] = record[feature_name]
  78. feature_data.append(item)
  79. feature_df = pd.DataFrame(feature_data)
  80. return feature_df
  81. def cal_score(df, param):
  82. """
  83. 计算score
  84. :param df: 特征数据
  85. :param param: 规则参数
  86. :return:
  87. """
  88. # score计算公式: sharerate*backrate*logback*ctr
  89. # sharerate = lastonehour_share/(lastonehour_play+1000)
  90. # backrate = lastonehour_return/(lastonehour_share+10)
  91. # ctr = lastonehour_play/(lastonehour_preview+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  92. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  93. df = df.fillna(0)
  94. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  95. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  96. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  97. if param.get('view_type', None) == 'video-show':
  98. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  99. elif param.get('view_type', None) == 'video-show-region':
  100. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show_region'] + 1000)
  101. else:
  102. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  103. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  104. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  105. df['platform_return_rate'] = df['platform_return'] / df['lastonehour_return']
  106. df = df.sort_values(by=['score'], ascending=False)
  107. return df
  108. def video_rank(df, now_date, now_h, rule_key, param, region):
  109. """
  110. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  111. :param df:
  112. :param now_date:
  113. :param now_h:
  114. :param rule_key: 小时级数据进入条件
  115. :param param: 小时级数据进入条件参数
  116. :param region: 所属地域
  117. :return:
  118. """
  119. redis_helper = RedisHelper()
  120. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  121. return_count = param.get('return_count', 1)
  122. score_value = param.get('score_rule', 0)
  123. platform_return_rate = param.get('platform_return_rate', 0)
  124. h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)
  125. & (df['platform_return_rate'] >= platform_return_rate)]
  126. # videoid重复时,保留分值高
  127. h_recall_df = h_recall_df.sort_values(by=['score'], ascending=False)
  128. h_recall_df = h_recall_df.drop_duplicates(subset=['videoid'], keep='first')
  129. h_recall_df['videoid'] = h_recall_df['videoid'].astype(int)
  130. h_recall_videos = h_recall_df['videoid'].to_list()
  131. log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  132. # 视频状态过滤
  133. filtered_videos = filter_video_status(h_recall_videos)
  134. log_.info('filtered_videos count = {}'.format(len(filtered_videos)))
  135. # 写入对应的redis
  136. h_video_ids = []
  137. h_recall_result = {}
  138. for video_id in filtered_videos:
  139. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  140. # print(score)
  141. h_recall_result[int(video_id)] = float(score)
  142. h_video_ids.append(int(video_id))
  143. h_recall_key_name = \
  144. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  145. if len(h_recall_result) > 0:
  146. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=23 * 3600)
  147. # 清空线上过滤应用列表
  148. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{rule_key}")
  149. region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
  150. # 与其他召回视频池去重,存入对应的redis
  151. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h, rule_key=rule_key,
  152. region_24h_rule_key=region_24h_rule_key, region=region)
  153. def dup_to_redis(h_video_ids, now_date, now_h, rule_key, region_24h_rule_key, region):
  154. """将地域分组小时级数据与其他召回视频池去重,存入对应的redis"""
  155. redis_helper = RedisHelper()
  156. # # ##### 去重更新地域分组天级列表,并另存为redis中
  157. # region_day_key_name = \
  158. # f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_DAY}{region}.rule1." \
  159. # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}"
  160. # if redis_helper.key_exists(key_name=region_day_key_name):
  161. # region_day_data = redis_helper.get_data_zset_with_index(
  162. # key_name=region_day_key_name, start=0, end=-1, with_scores=True)
  163. # log_.info(f'region day data count = {len(region_day_data)}')
  164. # region_day_dup = {}
  165. # for video_id, score in region_day_data:
  166. # if int(video_id) not in h_video_ids:
  167. # region_day_dup[int(video_id)] = score
  168. # h_video_ids.append(int(video_id))
  169. # log_.info(f"region day data dup count = {len(region_day_dup)}")
  170. # region_day_dup_key_name = \
  171. # f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_DAY_H}{region}.{rule_key}." \
  172. # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  173. # if len(region_day_dup) > 0:
  174. # redis_helper.add_data_with_zset(key_name=region_day_dup_key_name, data=region_day_dup, expire_time=23 * 3600)
  175. # ##### 去重更新地域分组小时级24h列表,并另存为redis中
  176. region_24h_key_name = \
  177. f"{config_.RECALL_KEY_NAME_PREFIX_REGION_BY_24H}{region}.{region_24h_rule_key}." \
  178. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  179. if redis_helper.key_exists(key_name=region_24h_key_name):
  180. region_24h_data = redis_helper.get_all_data_from_zset(key_name=region_24h_key_name, with_scores=True)
  181. log_.info(f'region 24h data count = {len(region_24h_data)}')
  182. region_24h_dup = {}
  183. for video_id, score in region_24h_data:
  184. if int(video_id) not in h_video_ids:
  185. region_24h_dup[int(video_id)] = score
  186. h_video_ids.append(int(video_id))
  187. log_.info(f"region 24h data dup count = {len(region_24h_dup)}")
  188. region_24h_dup_key_name = \
  189. f"{config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_24H_H}{region}.{rule_key}." \
  190. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  191. if len(region_24h_dup) > 0:
  192. redis_helper.add_data_with_zset(key_name=region_24h_dup_key_name, data=region_24h_dup, expire_time=23 * 3600)
  193. # ##### 去重小程序天级更新结果,并另存为redis中
  194. # day_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_DAY}rule2.{datetime.datetime.strftime(now_date, '%Y%m%d')}"
  195. # if redis_helper.key_exists(key_name=day_key_name):
  196. # day_data = redis_helper.get_data_zset_with_index(
  197. # key_name=day_key_name, start=0, end=-1, with_scores=True)
  198. # log_.info(f'day data count = {len(day_data)}')
  199. # day_dup = {}
  200. # for video_id, score in day_data:
  201. # if int(video_id) not in h_video_ids:
  202. # day_dup[int(video_id)] = score
  203. # h_video_ids.append(int(video_id))
  204. # log_.info(f"day data dup count = {len(day_dup)}")
  205. # day_dup_key_name = \
  206. # f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_DAY_H}{region}.{rule_key}." \
  207. # f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  208. # if len(day_dup) > 0:
  209. # redis_helper.add_data_with_zset(key_name=day_dup_key_name, data=day_dup, expire_time=23 * 3600)
  210. # ##### 去重小程序相对24h更新结果,并另存为redis中
  211. day_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_24H}rule2." \
  212. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  213. if redis_helper.key_exists(key_name=day_key_name):
  214. day_data = redis_helper.get_all_data_from_zset(key_name=day_key_name, with_scores=True)
  215. log_.info(f'24h data count = {len(day_data)}')
  216. day_dup = {}
  217. for video_id, score in day_data:
  218. if int(video_id) not in h_video_ids:
  219. day_dup[int(video_id)] = score
  220. h_video_ids.append(int(video_id))
  221. log_.info(f"24h data dup count = {len(day_dup)}")
  222. day_dup_key_name = \
  223. f"{config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_24H_H}{region}.{rule_key}." \
  224. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  225. if len(day_dup) > 0:
  226. redis_helper.add_data_with_zset(key_name=day_dup_key_name, data=day_dup, expire_time=23 * 3600)
  227. # 清空线上过滤应用列表
  228. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER_24H}{region}.{rule_key}")
  229. # ##### 去重小程序模型更新结果,并另存为redis中
  230. model_key_name = get_rov_redis_key(now_date=now_date)
  231. model_data = redis_helper.get_all_data_from_zset(key_name=model_key_name, with_scores=True)
  232. log_.info(f'model data count = {len(model_data)}')
  233. model_data_dup = {}
  234. for video_id, score in model_data:
  235. if int(video_id) not in h_video_ids:
  236. model_data_dup[int(video_id)] = score
  237. h_video_ids.append(int(video_id))
  238. log_.info(f"model data dup count = {len(model_data_dup)}")
  239. model_data_dup_key_name = \
  240. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H}{region}.{rule_key}." \
  241. f"{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  242. if len(model_data_dup) > 0:
  243. redis_helper.add_data_with_zset(key_name=model_data_dup_key_name, data=model_data_dup, expire_time=23 * 3600)
  244. def rank_by_h(project, table, now_date, now_h, rule_params, region_code_list):
  245. # 获取特征数据
  246. feature_df = get_feature_data(project=project, table=table, now_date=now_date)
  247. # 获取所有的region
  248. # region_code_list = list(set(feature_df[''].to_list()))
  249. # rank
  250. for key, value in rule_params.items():
  251. log_.info(f"rule = {key}, param = {value}")
  252. for region in region_code_list:
  253. log_.info(f"region = {region}")
  254. # 计算score
  255. region_df = feature_df[feature_df['code'] == region]
  256. log_.info(f'region_df count = {len(region_df)}')
  257. score_df = cal_score(df=region_df, param=value)
  258. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value, region=region)
  259. # to-csv
  260. score_filename = f"score_{region}_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  261. score_df.to_csv(f'./data/{score_filename}')
  262. # to-logs
  263. log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
  264. "region_code": region,
  265. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,
  266. "rule_key": key,
  267. # "score_df": score_df[['videoid', 'score']]
  268. }
  269. )
  270. def h_rank_bottom(now_date, now_h, rule_key, region_code_list, param):
  271. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  272. log_.info(f"rule_key = {rule_key}")
  273. region_24h_rule_key = param.get('region_24h_rule_key', 'rule1')
  274. # 获取rov模型结果
  275. redis_helper = RedisHelper()
  276. if now_h == 0:
  277. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  278. redis_h = 23
  279. else:
  280. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  281. redis_h = now_h - 1
  282. # key_prefix_list = [
  283. # config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H,
  284. # config_.RECALL_KEY_NAME_PREFIX_DUP1_REGION_DAY_H,
  285. # config_.RECALL_KEY_NAME_PREFIX_DUP2_REGION_DAY_H,
  286. # config_.RECALL_KEY_NAME_PREFIX_DUP_REGION_H
  287. # ]
  288. # fea_df = get_feature_data(project=project, table=table, now_date=now_date - datetime.timedelta(hours=1))
  289. # region_list = list(set(fea_df[''].to_list()))
  290. # 以上一小时的地域分组数据作为当前小时的数据
  291. key_prefix = config_.RECALL_KEY_NAME_PREFIX_REGION_BY_H
  292. for region in region_code_list:
  293. log_.info(f"region = {region}")
  294. key_name = f"{key_prefix}{region}.{rule_key}.{redis_dt}.{redis_h}"
  295. initial_data = redis_helper.get_all_data_from_zset(key_name=key_name, with_scores=True)
  296. if initial_data is None:
  297. initial_data = []
  298. final_data = dict()
  299. h_video_ids = []
  300. for video_id, score in initial_data:
  301. final_data[video_id] = score
  302. h_video_ids.append(int(video_id))
  303. # 存入对应的redis
  304. final_key_name = \
  305. f"{key_prefix}{region}.{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  306. if len(final_data) > 0:
  307. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  308. # 清空线上过滤应用列表
  309. redis_helper.del_keys(key_name=f"{config_.REGION_H_VIDEO_FILER}{region}.{rule_key}")
  310. # 与其他召回视频池去重,存入对应的redis
  311. dup_to_redis(h_video_ids=h_video_ids, now_date=now_date, now_h=now_h,
  312. rule_key=rule_key, region_24h_rule_key=region_24h_rule_key, region=region)
  313. def h_timer_check():
  314. rule_params = config_.RULE_PARAMS_REGION
  315. project = config_.PROJECT_REGION
  316. table = config_.TABLE_REGION
  317. region_code_list = [code for region, code in region_code.items()]
  318. now_date = datetime.datetime.today()
  319. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  320. now_h = datetime.datetime.now().hour
  321. now_min = datetime.datetime.now().minute
  322. if now_h == 0:
  323. for key, value in rule_params.items():
  324. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key, region_code_list=region_code_list, param=value)
  325. return
  326. # 查看当前小时更新的数据是否已准备好
  327. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  328. if h_data_count > 0:
  329. log_.info(f'h_data_count = {h_data_count}')
  330. # 数据准备好,进行更新
  331. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params,
  332. project=project, table=table, region_code_list=region_code_list)
  333. elif now_min > 50:
  334. log_.info('h_recall data is None, use bottom data!')
  335. for key, value in rule_params.items():
  336. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key, region_code_list=region_code_list, param=value)
  337. else:
  338. # 数据没准备好,1分钟后重新检查
  339. Timer(60, h_timer_check).start()
  340. if __name__ == '__main__':
  341. h_timer_check()