rule_rank_h.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. import datetime
  2. import pandas as pd
  3. import math
  4. from odps import ODPS
  5. from threading import Timer
  6. from get_data import get_data_from_odps
  7. from db_helper import RedisHelper
  8. from config import set_config
  9. from log import Log
  10. config_, _ = set_config()
  11. log_ = Log()
  12. project = 'loghubods'
  13. table = 'video_each_hour_update'
  14. features = [
  15. 'videoid',
  16. 'lastonehour_preview', # 过去1小时预曝光人数
  17. 'lastonehour_view', # 过去1小时曝光人数
  18. 'lastonehour_play', # 过去1小时播放人数
  19. 'lastonehour_share', # 过去1小时分享人数
  20. 'lastonehour_return', # 过去1小时分享,过去1小时回流人数
  21. 'lastonehour_preview_total_final', # 过去1小时预曝光次数
  22. 'lastonehour_view_total_final', # 过去1小时曝光次数
  23. 'lastonehour_play_total_final', # 过去1小时播放次数
  24. 'lastonehour_share_total_final', # 过去1小时分享次数
  25. 'lastonehour_show', # 过去1小时video_show人数
  26. 'lastonehour_show_total_final', # 过去1小时video_show次数
  27. ]
  28. def h_data_check(project, table, now_date):
  29. """检查数据是否准备好"""
  30. odps = ODPS(
  31. access_id=config_.ODPS_CONFIG['ACCESSID'],
  32. secret_access_key=config_.ODPS_CONFIG['ACCESSKEY'],
  33. project=project,
  34. endpoint=config_.ODPS_CONFIG['ENDPOINT'],
  35. connect_timeout=3000,
  36. read_timeout=500000,
  37. pool_maxsize=1000,
  38. pool_connections=1000
  39. )
  40. try:
  41. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  42. sql = f'select * from {project}.{table} where dt = {dt}'
  43. with odps.execute_sql(sql=sql).open_reader() as reader:
  44. data_count = reader.count
  45. except Exception as e:
  46. data_count = 0
  47. return data_count
  48. def get_rov_redis_key(now_date):
  49. # 获取rov模型结果存放key
  50. redis_helper = RedisHelper()
  51. now_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  52. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{now_dt}'
  53. if not redis_helper.key_exists(key_name=key_name):
  54. pre_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  55. key_name = f'{config_.RECALL_KEY_NAME_PREFIX}{pre_dt}'
  56. return key_name
  57. def get_feature_data(now_date):
  58. """获取特征数据"""
  59. dt = datetime.datetime.strftime(now_date, '%Y%m%d%H')
  60. # dt = '2022041310'
  61. records = get_data_from_odps(date=dt, project=project, table=table)
  62. feature_data = []
  63. for record in records:
  64. item = {}
  65. for feature_name in features:
  66. item[feature_name] = record[feature_name]
  67. feature_data.append(item)
  68. feature_df = pd.DataFrame(feature_data)
  69. return feature_df
  70. def cal_score(df, param):
  71. """
  72. 计算score
  73. :param df: 特征数据
  74. :param param: 规则参数
  75. :return:
  76. """
  77. # score计算公式: sharerate*backrate*logback*ctr
  78. # sharerate = lastonehour_share/(lastonehour_play+1000)
  79. # backrate = lastonehour_return/(lastonehour_share+10)
  80. # ctr = lastonehour_play/(lastonehour_view+1000), 对ctr限最大值:K2 = 0.6 if ctr > 0.6 else ctr
  81. # score = sharerate * backrate * LOG(lastonehour_return+1) * K2
  82. df = df.fillna(0)
  83. df['share_rate'] = df['lastonehour_share'] / (df['lastonehour_play'] + 1000)
  84. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share'] + 10)
  85. df['log_back'] = (df['lastonehour_return'] + 1).apply(math.log)
  86. if param.get('view_type', None) == 'pre-view':
  87. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_preview'] + 1000)
  88. elif param.get('view_type', None) == 'video-show':
  89. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_show'] + 1000)
  90. else:
  91. df['ctr'] = df['lastonehour_play'] / (df['lastonehour_view'] + 1000)
  92. df['K2'] = df['ctr'].apply(lambda x: 0.6 if x > 0.6 else x)
  93. df['score'] = df['share_rate'] * df['back_rate'] * df['log_back'] * df['K2']
  94. df = df.sort_values(by=['score'], ascending=False)
  95. return df
  96. def cal_score2(df):
  97. # score2计算公式: score = lastonehour_return/(lastonehour_view+1000)
  98. df = df.fillna(0)
  99. df['score'] = df['lastonehour_return'] / (df['lastonehour_view'] + 1000)
  100. df = df.sort_values(by=['score'], ascending=False)
  101. return df
  102. def cal_score3(df):
  103. # score3计算公式:
  104. # score = lastonehour_share_total_final/(lastonehour_view+1000)
  105. # + 0.03 * lastonehour_return/(lastonehour_share_total_final+1)
  106. df = df.fillna(0)
  107. df['share_rate'] = df['lastonehour_share_total_final'] / (df['lastonehour_view'] + 1000)
  108. df['back_rate'] = df['lastonehour_return'] / (df['lastonehour_share_total_final'] + 1)
  109. df['score'] = df['share_rate'] + 0.03 * df['back_rate']
  110. df = df.sort_values(by=['score'], ascending=False)
  111. return df
  112. def video_rank(df, now_date, now_h, rule_key, param):
  113. """
  114. 获取符合进入召回源条件的视频,与每日更新的rov模型结果视频列表进行合并
  115. :param df:
  116. :param now_date:
  117. :param now_h:
  118. :param rule_key: 小时级数据进入条件
  119. :param param: 小时级数据进入条件参数
  120. :return:
  121. """
  122. # 获取rov模型结果
  123. redis_helper = RedisHelper()
  124. key_name = get_rov_redis_key(now_date=now_date)
  125. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  126. log_.info(f'initial data count = {len(initial_data)}')
  127. # 获取符合进入召回源条件的视频,进入条件:小时级回流>=20 && score>=0.005
  128. return_count = param.get('return_count')
  129. score_value = param.get('score_rule')
  130. h_recall_df = df[(df['lastonehour_return'] >= return_count) & (df['score'] >= score_value)]
  131. h_recall_videos = h_recall_df['videoid'].to_list()
  132. log_.info(f'h_recall videos count = {len(h_recall_videos)}')
  133. # 写入对应的redis
  134. h_video_ids =[]
  135. h_recall_result = {}
  136. for video_id in h_recall_videos:
  137. score = h_recall_df[h_recall_df['videoid'] == video_id]['score']
  138. h_recall_result[int(video_id)] = float(score)
  139. h_video_ids.append(int(video_id))
  140. h_recall_key_name = \
  141. f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  142. if len(h_recall_result) > 0:
  143. redis_helper.add_data_with_zset(key_name=h_recall_key_name, data=h_recall_result, expire_time=23 * 3600)
  144. # 清空线上过滤应用列表
  145. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
  146. # 去重更新rov模型结果,并另存为redis中
  147. initial_data_dup = {}
  148. for video_id, score in initial_data:
  149. if int(video_id) not in h_video_ids:
  150. initial_data_dup[int(video_id)] = score
  151. log_.info(f"initial data dup count = {len(initial_data_dup)}")
  152. initial_key_name = \
  153. f"{config_.RECALL_KEY_NAME_PREFIX_DUP_H}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  154. if len(initial_data_dup) > 0:
  155. redis_helper.add_data_with_zset(key_name=initial_key_name, data=initial_data_dup, expire_time=23 * 3600)
  156. # # 去重合并
  157. # final_videos = [int(item) for item in h_recall_videos]
  158. # temp_videos = [int(video_id) for video_id, _ in initial_data if int(video_id) not in final_videos]
  159. # final_videos = final_videos + temp_videos
  160. # log_.info(f'final videos count = {len(final_videos)}')
  161. #
  162. # # 重新给定score
  163. # final_data = {}
  164. # for i, video_id in enumerate(final_videos):
  165. # score = 100 - i * config_.ROV_SCORE_D
  166. # final_data[video_id] = score
  167. #
  168. # # 存入对应的redis
  169. # final_key_name = f"{config_.RECALL_KEY_NAME_PREFIX_BY_H}{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  170. # redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=24 * 3600)
  171. def rank_by_h(now_date, now_h, rule_params):
  172. # 获取特征数据
  173. feature_df = get_feature_data(now_date=now_date)
  174. # rank
  175. for key, value in rule_params.items():
  176. log_.info(f"rule = {key}, param = {value}")
  177. # 计算score
  178. cal_score_func = value.get('cal_score_func', 0)
  179. if cal_score_func == 2:
  180. score_df = cal_score2(df=feature_df)
  181. elif cal_score_func == 3:
  182. score_df = cal_score3(df=feature_df)
  183. else:
  184. score_df = cal_score(df=feature_df, param=value)
  185. video_rank(df=score_df, now_date=now_date, now_h=now_h, rule_key=key, param=value)
  186. # to-csv
  187. score_filename = f"score_{key}_{datetime.datetime.strftime(now_date, '%Y%m%d%H')}.csv"
  188. score_df.to_csv(f'./data/{score_filename}')
  189. # to-logs
  190. log_.info({"date": datetime.datetime.strftime(now_date, '%Y%m%d%H'),
  191. "redis_key_prefix": config_.RECALL_KEY_NAME_PREFIX_BY_H,
  192. "rule_key": key,
  193. "score_df": score_df[['videoid', 'score']]})
  194. def h_rank_bottom(now_date, now_h, rule_key):
  195. """未按时更新数据,用上一小时结果作为当前小时的数据"""
  196. log_.info(f"rule_key = {rule_key}")
  197. # 获取rov模型结果
  198. redis_helper = RedisHelper()
  199. if now_h == 0:
  200. redis_dt = datetime.datetime.strftime(now_date - datetime.timedelta(days=1), '%Y%m%d')
  201. redis_h = 23
  202. else:
  203. redis_dt = datetime.datetime.strftime(now_date, '%Y%m%d')
  204. redis_h = now_h - 1
  205. key_prefix_list = [config_.RECALL_KEY_NAME_PREFIX_BY_H, config_.RECALL_KEY_NAME_PREFIX_DUP_H]
  206. for key_prefix in key_prefix_list:
  207. key_name = f"{key_prefix}{rule_key}.{redis_dt}.{redis_h}"
  208. initial_data = redis_helper.get_data_zset_with_index(key_name=key_name, start=0, end=-1, with_scores=True)
  209. final_data = dict()
  210. for video_id, score in initial_data:
  211. final_data[video_id] = score
  212. # 存入对应的redis
  213. final_key_name = \
  214. f"{key_prefix}{rule_key}.{datetime.datetime.strftime(now_date, '%Y%m%d')}.{now_h}"
  215. if len(final_data) > 0:
  216. redis_helper.add_data_with_zset(key_name=final_key_name, data=final_data, expire_time=23 * 3600)
  217. # 清空线上过滤应用列表
  218. redis_helper.del_keys(key_name=f"{config_.H_VIDEO_FILER}{rule_key}")
  219. def h_timer_check():
  220. rule_params = config_.RULE_PARAMS
  221. # return_count_list = [20, 10]
  222. now_date = datetime.datetime.today()
  223. log_.info(f"now_date: {datetime.datetime.strftime(now_date, '%Y%m%d%H')}")
  224. now_h = datetime.datetime.now().hour
  225. now_min = datetime.datetime.now().minute
  226. if now_h == 0:
  227. for key, _ in rule_params.items():
  228. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  229. return
  230. # 查看当前小时更新的数据是否已准备好
  231. h_data_count = h_data_check(project=project, table=table, now_date=now_date)
  232. if h_data_count > 0:
  233. log_.info(f'h_data_count = {h_data_count}')
  234. # 数据准备好,进行更新
  235. rank_by_h(now_date=now_date, now_h=now_h, rule_params=rule_params)
  236. elif now_min > 50:
  237. log_.info('h_recall data is None, use bottom data!')
  238. for key, _ in rule_params.items():
  239. h_rank_bottom(now_date=now_date, now_h=now_h, rule_key=key)
  240. else:
  241. # 数据没准备好,1分钟后重新检查
  242. Timer(60, h_timer_check).start()
  243. if __name__ == '__main__':
  244. # df1 = get_feature_data()
  245. # res = cal_score(df=df1)
  246. # video_rank(df=res, now_date=datetime.datetime.today())
  247. # rank_by_h()
  248. h_timer_check()