alg_growth_3rd_gh_reply_video_v1.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. # -*- coding: utf-8 -*-
  2. import pandas as pd
  3. import traceback
  4. import odps
  5. from odps import ODPS
  6. import json
  7. import time
  8. from pymysql.cursors import DictCursor
  9. from datetime import datetime, timedelta
  10. from db_helper import MysqlHelper
  11. from my_utils import check_table_partition_exits_v2, get_dataframe_from_odps, \
  12. get_odps_df_of_max_partition, get_odps_instance, get_odps_df_of_recent_partitions
  13. from my_utils import request_post, send_msg_to_feishu
  14. from my_config import set_config
  15. import numpy as np
  16. from log import Log
  17. import os
  18. from argparse import ArgumentParser
  19. from constants import AutoReplyAccountType
  20. CONFIG, _ = set_config()
  21. LOGGER = Log()
  22. BASE_GROUP_NAME = '3rd-party-base'
  23. EXPLORE1_GROUP_NAME = '3rd-party-explore1'
  24. EXPLORE2_GROUP_NAME = '3rd-party-explore2'
  25. # GH_IDS will be updated by get_and_update_gh_ids
  26. GH_IDS = ('default',)
  27. pd.set_option('display.max_rows', None)
  28. CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center"
  29. ODS_PROJECT = "loghubods"
  30. EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history'
  31. GH_REPLY_STATS_TABLE = 'alg_growth_3rd_gh_reply_video_stats'
  32. ODPS_RANK_RESULT_TABLE = 'alg_3rd_gh_autoreply_video_rank_data'
  33. GH_DETAIL = 'gh_detail'
  34. RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  35. STATS_PERIOD_DAYS = 5
  36. SEND_N = 1
  37. def get_and_update_gh_ids(run_dt):
  38. db = MysqlHelper(CONFIG.MYSQL_GROWTH_INFO)
  39. gh_type = AutoReplyAccountType.EXTERNAL_GZH.value
  40. sqlstr = f"""
  41. SELECT gh_id, gh_name, category1, category2, channel,
  42. video_ids, strategy_status
  43. FROM {GH_DETAIL}
  44. WHERE is_delete = 0 AND `type` = {gh_type}
  45. """
  46. account_data = db.get_data(sqlstr, DictCursor)
  47. account_df = pd.DataFrame(account_data)
  48. # default单独处理
  49. if 'default' not in account_df['gh_id'].values:
  50. new_row = pd.DataFrame({'gh_id': ['default'], 'gh_name': ['默认'], 'type': [2], 'category1': ['泛生活']},
  51. index=[0])
  52. account_df = pd.concat([account_df, new_row], ignore_index=True)
  53. account_df = account_df.drop_duplicates(subset=['gh_id'])
  54. global GH_IDS
  55. GH_IDS = tuple(account_df['gh_id'])
  56. return account_df
  57. def check_data_partition(project, table, data_dt, data_hr=None):
  58. """检查数据是否准备好"""
  59. try:
  60. partition_spec = {'dt': data_dt}
  61. if data_hr:
  62. partition_spec['hour'] = data_hr
  63. part_exist, data_count = check_table_partition_exits_v2(
  64. project, table, partition_spec)
  65. except Exception as e:
  66. data_count = 0
  67. return data_count
  68. def get_last_strategy_result(project, rank_table, dt_version, key):
  69. strategy_df = get_odps_df_of_max_partition(
  70. project, rank_table, {'ctime': dt_version}
  71. ).to_pandas()
  72. sub_df = strategy_df.query(f'strategy_key == "{key}"')
  73. sub_df = sub_df[['gh_id', 'video_id', 'strategy_key', 'sort']].drop_duplicates()
  74. return sub_df
  75. def process_reply_stats(project, table, period, run_dt):
  76. # 获取多天即转统计数据用于聚合
  77. df = get_odps_df_of_recent_partitions(project, table, period, {'dt': run_dt})
  78. df = df.to_pandas()
  79. df['video_id'] = df['video_id'].astype('int64')
  80. df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
  81. # 账号内聚合
  82. df = df.groupby(['video_id', 'gh_id']).agg({
  83. 'send_count': 'sum',
  84. 'first_visit_uv': 'sum',
  85. 'day0_return': 'sum'
  86. }).reset_index()
  87. # 聚合所有数据作为default
  88. default_stats_df = df.groupby('video_id').agg({
  89. 'send_count': 'sum',
  90. 'first_visit_uv': 'sum',
  91. 'day0_return': 'sum'
  92. }).reset_index()
  93. default_stats_df['gh_id'] = 'default'
  94. merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True)
  95. merged_df['score'] = merged_df['day0_return'] / (merged_df['first_visit_uv'] + 100)
  96. return merged_df
  97. def rank_for_layer1(run_dt, run_hour, project, table, gh):
  98. # TODO: 加审核&退场
  99. df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
  100. df = df.to_pandas()
  101. # 确保重跑时可获得一致结果
  102. dt_version = f'{run_dt}{run_hour}'
  103. np.random.seed(int(dt_version) + 1)
  104. # TODO: 修改权重计算策略
  105. df['score'] = df['ros']
  106. # 按照 category1 分类后进行加权随机抽样
  107. sampled_df = df.groupby('category1').apply(
  108. lambda x: x.sample(n=SEND_N, weights=x['score'], replace=False)).reset_index(drop=True)
  109. sampled_df['sort'] = sampled_df.groupby('category1')['score'].rank(method='first', ascending=False).astype(int)
  110. # 按得分排序
  111. sampled_df = sampled_df.sort_values(by=['category1', 'score'], ascending=[True, False]).reset_index(drop=True)
  112. sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME
  113. sampled_df['dt_version'] = dt_version
  114. extend_df = sampled_df.merge(gh, on='category1')
  115. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  116. return result_df
  117. def rank_for_layer2(run_dt, run_hour, project, stats_table, rank_table):
  118. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  119. # 确保重跑时可获得一致结果
  120. dt_version = f'{run_dt}{run_hour}'
  121. np.random.seed(int(dt_version) + 1)
  122. # TODO: 计算账号间相关性
  123. ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量
  124. ## 求向量相关系数或cosine相似度
  125. ## 单个视频的RoVn加权求和
  126. # 当前实现基础版本:只在账号内求二级探索排序分
  127. sampled_dfs = []
  128. # 处理default逻辑(default-explore2)
  129. default_stats_df = stats_df.query('gh_id == "default"')
  130. sampled_df = default_stats_df.sample(n=SEND_N, weights=default_stats_df['score'])
  131. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  132. sampled_dfs.append(sampled_df)
  133. # 基础过滤for账号
  134. df = stats_df.query('send_count > 200 and score > 0')
  135. # fallback to base if necessary
  136. base_strategy_df = get_last_strategy_result(
  137. project, rank_table, dt_version, BASE_GROUP_NAME)
  138. for gh_id in GH_IDS:
  139. if gh_id == 'default':
  140. continue
  141. sub_df = df.query(f'gh_id == "{gh_id}"')
  142. if len(sub_df) < SEND_N:
  143. LOGGER.warning(
  144. "gh_id[{}] rows[{}] not enough for layer2, fallback to base"
  145. .format(gh_id, len(sub_df)))
  146. sub_df = base_strategy_df.query(f'gh_id == "{gh_id}"')
  147. sub_df['score'] = sub_df['sort']
  148. sampled_df = sub_df.sample(n=SEND_N, weights=sub_df['score'])
  149. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  150. sampled_dfs.append(sampled_df)
  151. extend_df = pd.concat(sampled_dfs)
  152. extend_df['strategy_key'] = EXPLORE2_GROUP_NAME
  153. extend_df['dt_version'] = dt_version
  154. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  155. return result_df
  156. def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key):
  157. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  158. # TODO: support to set base manually
  159. dt_version = f'{run_dt}{run_hour}'
  160. # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间
  161. base_strategy_df = get_last_strategy_result(
  162. project, rank_table, dt_version, stg_key)
  163. default_stats_df = stats_df.query('gh_id == "default"')
  164. # 在账号内排序,决定该账号(包括default)的base利用内容
  165. # 排序过程中,确保当前base策略参与排序,因此先关联再过滤
  166. non_default_ids = list(filter(lambda x: x != 'default', GH_IDS))
  167. gh_ids_str = ','.join(f'"{x}"' for x in non_default_ids)
  168. stats_df = stats_df.query(f'gh_id in ({gh_ids_str})')
  169. stats_with_strategy_df = stats_df \
  170. .merge(
  171. base_strategy_df,
  172. on=['gh_id', 'video_id'],
  173. how='outer') \
  174. .query('strategy_key.notna() or (send_count > 500 and score > 0.05)') \
  175. .fillna({'score': 0.0})
  176. # 合并default和分账号数据
  177. grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index()
  178. def set_top_n(group, n=2):
  179. group_sorted = group.sort_values(by='score', ascending=False)
  180. top_n = group_sorted.head(n)
  181. top_n['sort'] = range(1, len(top_n) + 1)
  182. return top_n
  183. ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N)
  184. ranked_df = ranked_df.reset_index(drop=True)
  185. ranked_df['strategy_key'] = stg_key
  186. ranked_df['dt_version'] = dt_version
  187. ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  188. return ranked_df
  189. def check_result_data(df):
  190. for gh_id in GH_IDS:
  191. for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME):
  192. sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"')
  193. n_records = len(sub_df)
  194. if n_records != SEND_N:
  195. raise Exception(f"Unexpected record count: {gh_id},{key},{n_records}")
  196. def postprocess_override_by_config(df, dt_version):
  197. config = json.load(open("configs/3rd_gh_reply_video.json"))
  198. override_data = {
  199. 'strategy_key': [],
  200. 'gh_id': [],
  201. 'sort': [],
  202. 'video_id': []
  203. }
  204. for gh_id in config:
  205. gh_config = config[gh_id]
  206. for key in gh_config:
  207. for video_config in gh_config[key]:
  208. # remove current
  209. position = video_config['position']
  210. video_id = video_config['video_id']
  211. df = df.drop(df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}" and sort == {position}').index)
  212. override_data['strategy_key'].append(key)
  213. override_data['gh_id'].append(gh_id)
  214. override_data['sort'].append(position)
  215. override_data['video_id'].append(video_id)
  216. n_records = len(override_data['strategy_key'])
  217. override_data['dt_version'] = [dt_version] * n_records
  218. override_data['score'] = [0.0] * n_records
  219. df_to_append = pd.DataFrame(override_data)
  220. df = pd.concat([df, df_to_append], ignore_index=True)
  221. return df
  222. def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
  223. dt_version = f'{run_dt}{run_hour}'
  224. dry_run = kwargs.get('dry_run', False)
  225. gh_df = get_and_update_gh_ids(run_dt)
  226. layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE, gh_df)
  227. layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_RANK_RESULT_TABLE)
  228. base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_RANK_RESULT_TABLE,BASE_GROUP_NAME)
  229. final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True)
  230. final_rank_df = postprocess_override_by_config(final_rank_df, dt_version)
  231. check_result_data(final_rank_df)
  232. odps_instance = get_odps_instance(project)
  233. odps_ranked_df = odps.DataFrame(final_rank_df)
  234. video_df = get_dataframe_from_odps('videoods', 'wx_video')
  235. video_df['cover_url'] = video_df['cover_img_path'] + CDN_IMG_OPERATOR
  236. video_df = video_df['id', 'title', 'cover_url']
  237. final_df = odps_ranked_df.join(video_df, on=('video_id', 'id'))
  238. final_df = final_df.to_pandas()
  239. final_df = final_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'title', 'cover_url', 'score']]
  240. # reverse sending order
  241. final_df['sort'] = SEND_N + 1 - final_df['sort']
  242. if dry_run:
  243. print(final_df[['strategy_key', 'gh_id', 'sort', 'video_id', 'score', 'title']]
  244. .sort_values(by=['strategy_key', 'gh_id', 'sort']))
  245. return
  246. # save to ODPS
  247. t = odps_instance.get_table(ODPS_RANK_RESULT_TABLE)
  248. part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
  249. part_spec = ','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
  250. with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
  251. writer.write(list(final_df.itertuples(index=False)))
  252. # sync to MySQL
  253. data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)]
  254. data_columns = list(final_df.columns)
  255. max_time_to_delete = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
  256. mysql = MysqlHelper(CONFIG.MYSQL_GROWTH_INFO)
  257. mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns)
  258. # remove old data of same version
  259. for key in final_df['strategy_key'].unique():
  260. sql = f"""
  261. update {RDS_RANK_RESULT_TABLE}
  262. set is_delete = 1
  263. where
  264. dt_version = '{dt_version}'
  265. and strategy_key = '{key}'
  266. and create_time < '{max_time_to_delete}'
  267. and is_delete = 0
  268. """
  269. rows = mysql.execute(sql)
  270. def main():
  271. argparser = ArgumentParser()
  272. argparser.add_argument('-n', '--dry-run', action='store_true')
  273. argparser.add_argument('--run-at',help='assume to run at date and hour, yyyyMMddHH')
  274. args = argparser.parse_args()
  275. run_date = datetime.today()
  276. if args.run_at:
  277. run_date = datetime.strptime(args.run_at, "%Y%m%d%H")
  278. LOGGER.info(f"Assume to run at {run_date.strftime('%Y-%m-%d %H:00')}")
  279. try:
  280. now_date = datetime.today()
  281. LOGGER.info(f"开始执行: {datetime.strftime(now_date, '%Y-%m-%d %H:%M')}")
  282. last_date = run_date - timedelta(1)
  283. last_dt = last_date.strftime("%Y%m%d")
  284. # 查看当前天级更新的数据是否已准备好
  285. # 当前上游统计表为天级更新,但字段设计为兼容小时级
  286. while True:
  287. h_data_count = check_data_partition(ODS_PROJECT, GH_REPLY_STATS_TABLE, last_dt, '00')
  288. if h_data_count > 0:
  289. LOGGER.info('上游数据表查询数据条数={},开始计算'.format(h_data_count))
  290. run_dt = run_date.strftime("%Y%m%d")
  291. run_hour = run_date.strftime("%H")
  292. LOGGER.info(f'run_dt: {run_dt}, run_hour: {run_hour}')
  293. build_and_transfer_data(run_dt, run_hour, ODS_PROJECT,
  294. dry_run=args.dry_run)
  295. LOGGER.info('数据更新完成')
  296. return
  297. else:
  298. LOGGER.info("上游数据未就绪,等待60s")
  299. time.sleep(60)
  300. except Exception as e:
  301. LOGGER.error(f"数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  302. return
  303. if CONFIG.ENV_TEXT == '开发环境':
  304. return
  305. send_msg_to_feishu(
  306. webhook=CONFIG.FEISHU_ROBOT['growth_task_robot'].get('webhook'),
  307. key_word=CONFIG.FEISHU_ROBOT['growth_task_robot'].get('key_word'),
  308. msg_text=f"rov-offline{CONFIG.ENV_TEXT} - 数据更新失败\n"
  309. f"exception: {e}\n"
  310. f"traceback: {traceback.format_exc()}"
  311. )
  312. if __name__ == '__main__':
  313. LOGGER.info("%s 开始执行" % os.path.basename(__file__))
  314. LOGGER.info(f"environment: {CONFIG.ENV_TEXT}")
  315. main()