alg_growth_we_com_reply_video_v1.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. # -*- coding: utf-8 -*-
  2. import pandas as pd
  3. import traceback
  4. import odps
  5. from odps import ODPS
  6. from threading import Timer
  7. from datetime import datetime, timedelta
  8. from db_helper import MysqlHelper
  9. from my_utils import check_table_partition_exits_v2, get_dataframe_from_odps, \
  10. get_odps_df_of_max_partition, get_odps_instance, get_odps_df_of_recent_partitions
  11. from my_utils import request_post, send_msg_to_feishu
  12. from my_config import set_config
  13. import numpy as np
  14. from log import Log
  15. import os
  16. from argparse import ArgumentParser
  17. CONFIG, _ = set_config()
  18. LOGGER = Log()
  19. BASE_GROUP_NAME = 'we-com-base'
  20. EXPLORE1_GROUP_NAME = 'we-com-explore1'
  21. EXPLORE2_GROUP_NAME = 'we-com-explore2'
  22. # TODO: fetch gh_id from external data source
  23. GH_IDS = ('SongYi', 'XinYi', '17512006748', '18810931977', '15146364945', 'lky', '19270839710')
  24. CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center"
  25. ODS_PROJECT = "loghubods"
  26. EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history'
  27. GH_REPLY_STATS_TABLE = 'alg_growth_3rd_gh_reply_video_stats'
  28. # ODPS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  29. ODPS_WE_COM_RANK_RESULT_TABLE = 'alg_we_com_autoreply_video_rank_data'
  30. RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data'
  31. STATS_PERIOD_DAYS = 5
  32. SEND_N = 2
  33. def check_data_partition(project, table, data_dt, data_hr=None):
  34. """检查数据是否准备好"""
  35. try:
  36. partition_spec = {'dt': data_dt}
  37. if data_hr:
  38. partition_spec['hour'] = data_hr
  39. part_exist, data_count = check_table_partition_exits_v2(
  40. project, table, partition_spec)
  41. except Exception as e:
  42. data_count = 0
  43. return data_count
  44. def get_last_strategy_result(project, rank_table, dt_version, key):
  45. strategy_df = get_odps_df_of_max_partition(
  46. project, rank_table, {'ctime': dt_version}
  47. ).to_pandas()
  48. sub_df = strategy_df.query(f'strategy_key == "{key}"')
  49. sub_df = sub_df[['gh_id', 'video_id', 'strategy_key', 'sort']].drop_duplicates()
  50. return sub_df
  51. def process_reply_stats(project, table, period, run_dt):
  52. # 获取多天即转统计数据用于聚合
  53. df = get_odps_df_of_recent_partitions(project, table, period, {'dt': run_dt})
  54. df = df.to_pandas()
  55. df['video_id'] = df['video_id'].astype('int64')
  56. df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']]
  57. # 账号内聚合
  58. df = df.groupby(['video_id', 'gh_id']).agg({
  59. 'send_count': 'sum',
  60. 'first_visit_uv': 'sum',
  61. 'day0_return': 'sum'
  62. }).reset_index()
  63. # 聚合所有数据作为default
  64. default_stats_df = df.groupby('video_id').agg({
  65. 'send_count': 'sum',
  66. 'first_visit_uv': 'sum',
  67. 'day0_return': 'sum'
  68. }).reset_index()
  69. default_stats_df['gh_id'] = 'default'
  70. merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True)
  71. merged_df['score'] = merged_df['day0_return'] / (merged_df['send_count'] + 500)
  72. return merged_df
  73. def rank_for_layer1(run_dt, run_hour, project, table):
  74. # TODO: 加审核&退场
  75. df = get_odps_df_of_max_partition(project, table, {'dt': run_dt})
  76. df = df.to_pandas()
  77. # 确保重跑时可获得一致结果
  78. dt_version = f'{run_dt}{run_hour}'
  79. np.random.seed(int(dt_version) + 1)
  80. # TODO: 修改权重计算策略
  81. df['score'] = df['ros']
  82. sampled_df = df.sample(n=SEND_N, weights=df['score'])
  83. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  84. sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME
  85. sampled_df['dt_version'] = dt_version
  86. gh_name_df = pd.DataFrame({'gh_id': GH_IDS + ('default',)})
  87. sampled_df['_tmpkey'] = 1
  88. gh_name_df['_tmpkey'] = 1
  89. extend_df = sampled_df.merge(gh_name_df, on='_tmpkey').drop('_tmpkey', axis=1)
  90. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  91. return result_df
  92. def rank_for_layer2(run_dt, run_hour, project, stats_table, rank_table):
  93. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  94. # 确保重跑时可获得一致结果
  95. dt_version = f'{run_dt}{run_hour}'
  96. np.random.seed(int(dt_version) + 1)
  97. # TODO: 计算账号间相关性
  98. ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量
  99. ## 求向量相关系数或cosine相似度
  100. ## 单个视频的RoVn加权求和
  101. # 当前实现基础版本:只在账号内求二级探索排序分
  102. sampled_dfs = []
  103. # 处理default逻辑(default-explore2)
  104. default_stats_df = stats_df.query('gh_id == "default"')
  105. sampled_df = default_stats_df.sample(n=SEND_N, weights=default_stats_df['score'])
  106. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  107. sampled_dfs.append(sampled_df)
  108. # 基础过滤for账号
  109. df = stats_df.query('day0_return > 100')
  110. # fallback to base if necessary
  111. base_strategy_df = get_last_strategy_result(
  112. project, rank_table, dt_version, BASE_GROUP_NAME)
  113. for gh_id in GH_IDS:
  114. sub_df = df.query(f'gh_id == "{gh_id}"')
  115. if len(sub_df) < SEND_N:
  116. LOGGER.warning(
  117. "gh_id[{}] rows[{}] not enough for layer2, fallback to base"
  118. .format(gh_id, len(sub_df)))
  119. sub_df = base_strategy_df.query(f'gh_id == "{gh_id}"')
  120. sub_df['score'] = sub_df['sort']
  121. sampled_df = sub_df.sample(n=SEND_N, weights=sub_df['score'])
  122. sampled_df['sort'] = range(1, len(sampled_df) + 1)
  123. sampled_dfs.append(sampled_df)
  124. extend_df = pd.concat(sampled_dfs)
  125. extend_df['strategy_key'] = EXPLORE2_GROUP_NAME
  126. extend_df['dt_version'] = dt_version
  127. result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  128. return result_df
  129. def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key):
  130. stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt)
  131. # TODO: support to set base manually
  132. dt_version = f'{run_dt}{run_hour}'
  133. # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间
  134. base_strategy_df = get_last_strategy_result(
  135. project, rank_table, dt_version, stg_key)
  136. default_stats_df = stats_df.query('gh_id == "default"')
  137. # 在账号内排序,决定该账号(包括default)的base利用内容
  138. # 排序过程中,确保当前base策略参与排序,因此先关联再过滤
  139. gh_ids_str = ','.join(f'"{x}"' for x in GH_IDS)
  140. stats_df = stats_df.query(f'gh_id in ({gh_ids_str})')
  141. stats_with_strategy_df = stats_df \
  142. .merge(
  143. base_strategy_df,
  144. on=['gh_id', 'video_id'],
  145. how='left') \
  146. .query('strategy_key.notna() or score > 0.1')
  147. # 合并default和分账号数据
  148. grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index()
  149. def set_top_n(group, n=2):
  150. group_sorted = group.sort_values(by='score', ascending=False)
  151. top_n = group_sorted.head(n)
  152. top_n['sort'] = range(1, len(top_n) + 1)
  153. return top_n
  154. ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N)
  155. ranked_df = ranked_df.reset_index(drop=True)
  156. # ranked_df['sort'] = grouped_stats_df.groupby('gh_id')['score'].rank(ascending=False)
  157. ranked_df['strategy_key'] = stg_key
  158. ranked_df['dt_version'] = dt_version
  159. ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']]
  160. return ranked_df
  161. def check_result_data(df):
  162. for gh_id in GH_IDS + ('default',):
  163. for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME):
  164. sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"')
  165. if len(sub_df) != SEND_N:
  166. raise Exception(f"Result not enough for gh_id[{gh_id}]")
  167. def rank_for_base_designate(run_dt, run_hour, stg_key):
  168. dt_version = f'{run_dt}{run_hour}'
  169. ranked_df = pd.DataFrame() # 初始化一个空的 DataFrame
  170. # 定义每个 gh_id 的视频信息
  171. gh_id_data = {
  172. 'SongYi': [
  173. (12794884, 0.6, 1),
  174. (13788955, 0.5, 2)
  175. ],
  176. 'XinYi': [
  177. (33332362, 0.6, 1),
  178. (19175397, 0.5, 2)
  179. ],
  180. '17512006748': [
  181. (33780344, 0.6, 1),
  182. (28296967, 0.5, 2)
  183. ],
  184. '18810931977': [
  185. (34612052, 0.6, 1),
  186. (33743665, 0.5, 2)
  187. ],
  188. '15146364945': [
  189. (26348326, 0.6, 1),
  190. (34130872, 0.5, 2)
  191. ],
  192. 'lky': [
  193. (33332362, 0.6, 1),
  194. (19175397, 0.5, 2)
  195. ],
  196. '19270839710': [
  197. (12794884, 0.6, 1),
  198. (13793870, 0.5, 2)
  199. ]
  200. }
  201. # 默认视频信息
  202. default_data = [
  203. (12794884, 0.6, 1),
  204. (13788955, 0.5, 2)
  205. ]
  206. # 遍历 gh_id 列表
  207. for gh_id in GH_IDS + ('default',):
  208. if gh_id in gh_id_data:
  209. data_to_use = gh_id_data[gh_id]
  210. else:
  211. data_to_use = default_data
  212. # 创建 DataFrame 并拼接
  213. for video_id, score, sort in data_to_use:
  214. temp_df = pd.DataFrame({
  215. 'strategy_key': [stg_key],
  216. 'dt_version': [dt_version],
  217. 'gh_id': [gh_id],
  218. 'sort': [sort],
  219. 'video_id': [video_id],
  220. 'score': [score]
  221. })
  222. ranked_df = pd.concat([ranked_df, temp_df], ignore_index=True)
  223. return ranked_df
  224. def build_and_transfer_data(run_dt, run_hour, project, **kwargs):
  225. dt_version = f'{run_dt}{run_hour}'
  226. dry_run = kwargs.get('dry_run', False)
  227. # layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE)
  228. # layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_WE_COM_RANK_RESULT_TABLE)
  229. # base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_WE_COM_RANK_RESULT_TABLE,BASE_GROUP_NAME)
  230. layer1_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE1_GROUP_NAME)
  231. layer2_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE2_GROUP_NAME)
  232. base_rank = rank_for_base_designate(run_dt, run_hour, BASE_GROUP_NAME)
  233. final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True)
  234. check_result_data(final_rank_df)
  235. odps_instance = get_odps_instance(project)
  236. odps_ranked_df = odps.DataFrame(final_rank_df)
  237. video_df = get_dataframe_from_odps('videoods', 'wx_video')
  238. video_df['cover_url'] = video_df['cover_img_path'] + CDN_IMG_OPERATOR
  239. video_df = video_df['id', 'title', 'cover_url']
  240. final_df = odps_ranked_df.join(video_df, on=('video_id', 'id'))
  241. final_df = final_df.to_pandas()
  242. final_df = final_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'title', 'cover_url', 'score']]
  243. # reverse sending order
  244. final_df['sort'] = SEND_N + 1 - final_df['sort']
  245. if dry_run:
  246. print(final_df[['strategy_key', 'gh_id', 'sort', 'video_id', 'score', 'title']])
  247. return
  248. # save to ODPS
  249. t = odps_instance.get_table(ODPS_WE_COM_RANK_RESULT_TABLE)
  250. part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version}
  251. part_spec = ','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()])
  252. with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer:
  253. writer.write(list(final_df.itertuples(index=False)))
  254. # sync to MySQL
  255. data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)]
  256. data_columns = list(final_df.columns)
  257. mysql = MysqlHelper(CONFIG.MYSQL_CRAWLER_INFO)
  258. mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns)
  259. def main_loop():
  260. argparser = ArgumentParser()
  261. argparser.add_argument('-n', '--dry-run', action='store_true')
  262. args = argparser.parse_args()
  263. try:
  264. now_date = datetime.today()
  265. LOGGER.info(f"开始执行: {datetime.strftime(now_date, '%Y-%m-%d %H:%M')}")
  266. now_hour = now_date.strftime("%H")
  267. last_date = now_date - timedelta(1)
  268. last_dt = last_date.strftime("%Y%m%d")
  269. # 查看当前天级更新的数据是否已准备好
  270. # 当前上游统计表为天级更新,但字段设计为兼容小时级
  271. h_data_count = check_data_partition(ODS_PROJECT, GH_REPLY_STATS_TABLE, last_dt, '00')
  272. if h_data_count > 0:
  273. LOGGER.info('上游数据表查询数据条数={},开始计算'.format(h_data_count))
  274. run_dt = now_date.strftime("%Y%m%d")
  275. LOGGER.info(f'run_dt: {run_dt}, run_hour: {now_hour}')
  276. build_and_transfer_data(run_dt, now_hour, ODS_PROJECT,
  277. dry_run=args.dry_run)
  278. LOGGER.info('数据更新完成')
  279. else:
  280. LOGGER.info("上游数据未就绪,等待60s")
  281. Timer(60, main_loop).start()
  282. return
  283. except Exception as e:
  284. LOGGER.error(f"数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
  285. if CONFIG.ENV_TEXT == '开发环境':
  286. return
  287. send_msg_to_feishu(
  288. webhook=CONFIG.FEISHU_ROBOT['server_robot'].get('webhook'),
  289. key_word=CONFIG.FEISHU_ROBOT['server_robot'].get('key_word'),
  290. msg_text=f"rov-offline{CONFIG.ENV_TEXT} - 数据更新失败\n"
  291. f"exception: {e}\n"
  292. f"traceback: {traceback.format_exc()}"
  293. )
  294. if __name__ == '__main__':
  295. LOGGER.info("%s 开始执行" % os.path.basename(__file__))
  296. LOGGER.info(f"environment: {CONFIG.ENV_TEXT}")
  297. main_loop()