import datetime
import traceback
import multiprocessing
from threading import Timer
from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new
from config import set_config
from log import Log
config_, _ = set_config()
log_ = Log()
redis_helper = RedisHelper()
features = [
'apptype',
'videoid',
'ad_type', # 0: all, 1: 自营,2: 微信
'sharerate', # 被分享的概率
'no_ad_rate', # 不出广告的概率
'no_adrate_share', # 被分享的情况下且不出广告的概率
'ad_rate', # 出广告的概率
'adrate_share', # 被分享的情况下且出广告的概率
]
def get_top10_abnormal_videos_return(dt, filter_param):
"""获取昨日各端top10中的异常视频(裂变视频)"""
abnormal_video_project = config_.ad_model_data['top10_videos'].get('project')
abnormal_video_table = config_.ad_model_data['top10_videos'].get('table')
abnormal_video_features = [
'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple'
]
data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt)
top10_abnormal_videos = {}
if data_count > 0:
abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table,
features=abnormal_video_features, dt=dt)
abnormal_video_df['multiple'].fillna(0, inplace=True)
abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int)
abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int)
abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int)
abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int)
abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float)
app_type_list = list(set(abnormal_video_df['apptype'].tolist()))
for app_type in app_type_list:
app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type]
app_type_df = app_type_df.sort_values(by=['rank'], ascending=True)
# print(app_type_df)
temp_video_id_list = []
for index, item in app_type_df.iterrows():
# print(item['rank'], item['videoid'], item['multiple'])
if item['multiple'] > filter_param:
# print(item['videoid'], item['multiple'])
abnormal_video_id_list = temp_video_id_list.copy()
abnormal_video_id_list.append(int(item['videoid']))
top10_abnormal_videos[app_type] = abnormal_video_id_list
temp_video_id_list.append(int(item['videoid']))
else:
temp_video_id_list.append(int(item['videoid']))
# print(top10_abnormal_videos)
log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}")
return top10_abnormal_videos
def predict_video_share_rate_with_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
"""预估视频有广告时被分享的概率"""
# 获取对应的视频特征
video_df = video_initial_df.copy()
# 获取所有广告类型对应的数据
video_df['ad_type'] = video_df['ad_type'].astype(int)
video_df = video_df[video_df['ad_type'] == 0]
video_df['apptype'] = video_df['apptype'].astype(int)
video_df = video_df[video_df['apptype'] == int(data_param)]
log_.info(f"video_df length: {len(video_df)}")
# print(video_df)
video_df['ad_rate'].fillna(0, inplace=True)
video_df['sharerate'].fillna(0, inplace=True)
video_df['adrate_share'].fillna(0, inplace=True)
video_df['ad_rate'] = video_df['ad_rate'].astype(float)
video_df['sharerate'] = video_df['sharerate'].astype(float)
video_df['adrate_share'] = video_df['adrate_share'].astype(float)
# 计算视频有广告时被分享率
video_df = video_df[video_df['ad_rate'] != 0]
# print(video_df)
video_df['video_ad_share_rate'] = \
video_df['adrate_share'] * video_df['sharerate'] / video_df['ad_rate']
video_df['video_ad_share_rate'].fillna(0, inplace=True)
# log_.info(f"video_df: {video_df}")
# video_df = video_df[video_df['video_ad_share_rate'] != 0]
log_.info(f"video_df filtered 0 length: {len(video_df)}")
# 结果写入redis
key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_WITH_AD}{data_key}:{dt}"
redis_data = {}
for index, item in video_df.iterrows():
redis_data[int(item['videoid'])] = item['video_ad_share_rate']
# 剔除异常视频数据
video_df['videoid'] = video_df['videoid'].astype(int)
top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
if top10_abnormal_video_ids is not None:
video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean()
redis_data[-1] = group_ad_share_rate_mean
log_.info(f"redis_data count: {len(redis_data)}")
if len(redis_data) > 0:
redis_helper = RedisHelper()
redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
return video_df
def predict_video_share_rate_no_ad(video_initial_df, dt, data_key, data_param, top10_abnormal_videos):
"""预估视频无广告时被分享的概率"""
# 获取对应的视频特征
video_df = video_initial_df.copy()
# 获取所有广告类型对应的数据
video_df['ad_type'] = video_df['ad_type'].astype(int)
video_df = video_df[video_df['ad_type'] == 0]
video_df['apptype'] = video_df['apptype'].astype(int)
video_df = video_df[video_df['apptype'] == int(data_param)]
log_.info(f"video_df length: {len(video_df)}")
video_df['no_ad_rate'].fillna(0, inplace=True)
video_df['sharerate'].fillna(0, inplace=True)
video_df['no_adrate_share'].fillna(0, inplace=True)
video_df['no_ad_rate'] = video_df['no_ad_rate'].astype(float)
video_df['sharerate'] = video_df['sharerate'].astype(float)
video_df['no_adrate_share'] = video_df['no_adrate_share'].astype(float)
# 计算视频无广告时被分享率
video_df = video_df[video_df['no_ad_rate'] != 0]
video_df['video_no_ad_share_rate'] = \
video_df['no_adrate_share'] * video_df['sharerate'] / video_df['no_ad_rate']
video_df['video_no_ad_share_rate'].fillna(0, inplace=True)
# log_.info(f"video_df: {video_df}")
# video_df = video_df[video_df['video_no_ad_share_rate'] != 0]
log_.info(f"video_df filtered 0 length: {len(video_df)}")
# 结果写入redis
key_name = f"{config_.KEY_NAME_PREFIX_VIDEO_NO_AD}{data_key}:{dt}"
redis_data = {}
for index, item in video_df.iterrows():
redis_data[int(item['videoid'])] = item['video_no_ad_share_rate']
# 剔除异常视频数据
video_df['videoid'] = video_df['videoid'].astype(int)
top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None)
if top10_abnormal_video_ids is not None:
video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)]
group_ad_share_rate_mean = video_df['video_no_ad_share_rate'].mean()
redis_data[-1] = group_ad_share_rate_mean
log_.info(f"redis_data count: {len(redis_data)}")
if len(redis_data) > 0:
redis_helper = RedisHelper()
redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600)
return video_df
def update_videos_data(project, table, dt, update_params, top10_abnormal_videos):
"""预估视频有广告时分享率"""
# 获取视频特征
video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt)
for data_key, data_param in update_params.items():
log_.info(f"data_key = {data_key} update start...")
log_.info(f"predict_video_share_rate_with_ad start...")
predict_video_share_rate_with_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
log_.info(f"predict_video_share_rate_with_ad end!")
log_.info(f"predict_video_share_rate_no_ad start...")
predict_video_share_rate_no_ad(video_initial_df=video_initial_df, dt=dt, data_key=data_key,
data_param=data_param, top10_abnormal_videos=top10_abnormal_videos)
log_.info(f"predict_video_share_rate_no_ad end!")
log_.info(f"data_key = {data_key} update end!")
def timer_check(dt, video_key, video_params, top10_abnormal_videos):
log_.info(f"video_key = {video_key}")
project = config_.ad_model_data[video_key].get('project')
table = config_.ad_model_data[video_key].get('table')
# 查看当前更新的数据是否已准备好
data_count = data_check(project=project, table=table, dt=dt)
if data_count > 0:
log_.info(f"ad video data count = {data_count}")
# 数据准备好,进行更新
update_videos_data(project=project, table=table, dt=dt, update_params=video_params,
top10_abnormal_videos=top10_abnormal_videos)
log_.info(f"video_key = {video_key} ad video data update end!")
msg_list = [
f"env: rov-offline {config_.ENV_TEXT}",
f"video_key: {video_key}",
f"now_date: {dt}",
f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
]
send_msg_to_feishu_new(
webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'),
key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'),
title='新策略 -- 广告模型视频分享率预测数据更新完成',
msg_list=msg_list
)
else:
# 数据没准备好,1分钟后重新检查
Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start()
def main():
try:
now_date = datetime.datetime.today()
dt = datetime.datetime.strftime(now_date, '%Y%m%d')
log_.info(f"now_date: {dt}")
# 获取昨天top10中的异常视频(裂变视频)
top10_abnormal_videos = get_top10_abnormal_videos_return(
dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param')
)
update_params = config_.AD_VIDEO_DATA_PARAMS_NEW_STRATEGY
pool = multiprocessing.Pool(processes=len(update_params))
for video_key, video_params in update_params.items():
pool.apply_async(
func=timer_check,
args=(dt, video_key, video_params, top10_abnormal_videos)
)
pool.close()
pool.join()
# for video_key, video_params in update_params.items():
# timer_check(dt, video_key, video_params, top10_abnormal_videos)
except Exception as e:
log_.error(f"新策略 -- 广告模型视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}")
msg_list = [
f"env: rov-offline {config_.ENV_TEXT}",
f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}",
f"exception: {e}",
f"traceback: {traceback.format_exc()}",
]
send_msg_to_feishu_new(
webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'),
key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'),
title='新策略 -- 广告模型视频分享率预测数据更新失败',
msg_list=msg_list
)
if __name__ == '__main__':
# timer_check()
main()