# -*- coding: utf-8 -*- import pandas as pd import traceback import odps from odps import ODPS from threading import Timer from datetime import datetime, timedelta from db_helper import MysqlHelper from my_utils import check_table_partition_exits_v2, get_dataframe_from_odps, \ get_odps_df_of_max_partition, get_odps_instance, get_odps_df_of_recent_partitions from my_utils import request_post, send_msg_to_feishu from my_config import set_config import numpy as np from log import Log import os from argparse import ArgumentParser from constants import AutoReplyAccountType from alg_growth_common import check_unsafe_video, filter_unsafe_video CONFIG, _ = set_config() LOGGER = Log() BASE_GROUP_NAME = 'we-com-base' EXPLORE1_GROUP_NAME = 'we-com-explore1' EXPLORE2_GROUP_NAME = 'we-com-explore2' # TODO: fetch gh_id from external data source GH_IDS = ('SongYi', 'XinYi', '17512006748', '18810931977', '15146364945', 'lky', '19270839710', 'ManShiGuang', 'ShengHuoLeQu', '16524700048', '16584214894') CDN_IMG_OPERATOR = "?x-oss-process=image/resize,m_fill,w_600,h_480,limit_0/format,jpg/watermark,image_eXNoL3BpYy93YXRlcm1hcmtlci9pY29uX3BsYXlfd2hpdGUucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLHdfMTQ0,g_center" ODS_PROJECT = "loghubods" EXPLORE_POOL_TABLE = 'alg_growth_video_return_stats_history' GH_REPLY_STATS_TABLE = 'alg_growth_3rd_gh_reply_video_stats' # ODPS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data' ODPS_WE_COM_RANK_RESULT_TABLE = 'alg_we_com_autoreply_video_rank_data' RDS_RANK_RESULT_TABLE = 'alg_gh_autoreply_video_rank_data' STATS_PERIOD_DAYS = 5 SEND_N = 2 def check_data_partition(project, table, data_dt, data_hr=None): """检查数据是否准备好""" try: partition_spec = {'dt': data_dt} if data_hr: partition_spec['hour'] = data_hr part_exist, data_count = check_table_partition_exits_v2( project, table, partition_spec) except Exception as e: data_count = 0 return data_count def get_last_strategy_result(project, rank_table, dt_version, key): strategy_df = get_odps_df_of_max_partition( project, rank_table, {'ctime': dt_version} ).to_pandas() sub_df = strategy_df.query(f'strategy_key == "{key}"') sub_df = sub_df[['gh_id', 'video_id', 'strategy_key', 'sort']].drop_duplicates() return sub_df def process_reply_stats(project, table, period, run_dt): # 获取多天即转统计数据用于聚合 df = get_odps_df_of_recent_partitions(project, table, period, {'dt': run_dt}) df = df.to_pandas() df['video_id'] = df['video_id'].astype('int64') df = df[['gh_id', 'video_id', 'send_count', 'first_visit_uv', 'day0_return']] # 账号内聚合 df = df.groupby(['video_id', 'gh_id']).agg({ 'send_count': 'sum', 'first_visit_uv': 'sum', 'day0_return': 'sum' }).reset_index() # 聚合所有数据作为default default_stats_df = df.groupby('video_id').agg({ 'send_count': 'sum', 'first_visit_uv': 'sum', 'day0_return': 'sum' }).reset_index() default_stats_df['gh_id'] = 'default' merged_df = pd.concat([df, default_stats_df]).reset_index(drop=True) merged_df['score'] = merged_df['day0_return'] / (merged_df['send_count'] + 500) return merged_df def rank_for_layer1(run_dt, run_hour, project, table): # TODO: 加审核&退场 df = get_odps_df_of_max_partition(project, table, {'dt': run_dt}) df = df.to_pandas() # 确保重跑时可获得一致结果 dt_version = f'{run_dt}{run_hour}' np.random.seed(int(dt_version) + 1) # TODO: 修改权重计算策略 df['score'] = df['ros'] sampled_df = df.sample(n=SEND_N, weights=df['score']) sampled_df['sort'] = range(1, len(sampled_df) + 1) sampled_df['strategy_key'] = EXPLORE1_GROUP_NAME sampled_df['dt_version'] = dt_version gh_name_df = pd.DataFrame({'gh_id': GH_IDS + ('default',)}) sampled_df['_tmpkey'] = 1 gh_name_df['_tmpkey'] = 1 extend_df = sampled_df.merge(gh_name_df, on='_tmpkey').drop('_tmpkey', axis=1) result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']] return result_df def rank_for_layer2(run_dt, run_hour, project, stats_table, rank_table): stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt) # 确保重跑时可获得一致结果 dt_version = f'{run_dt}{run_hour}' np.random.seed(int(dt_version) + 1) # TODO: 计算账号间相关性 ## 账号两两组合,取有RoVn数值视频的交集,单个账号内的RoVn(平滑后)组成向量 ## 求向量相关系数或cosine相似度 ## 单个视频的RoVn加权求和 # 当前实现基础版本:只在账号内求二级探索排序分 sampled_dfs = [] # 处理default逻辑(default-explore2) default_stats_df = stats_df.query('gh_id == "default"') sampled_df = default_stats_df.sample(n=SEND_N, weights=default_stats_df['score']) sampled_df['sort'] = range(1, len(sampled_df) + 1) sampled_dfs.append(sampled_df) # 基础过滤for账号 df = stats_df.query('day0_return > 100') # fallback to base if necessary base_strategy_df = get_last_strategy_result( project, rank_table, dt_version, BASE_GROUP_NAME) for gh_id in GH_IDS: sub_df = df.query(f'gh_id == "{gh_id}"') if len(sub_df) < SEND_N: LOGGER.warning( "gh_id[{}] rows[{}] not enough for layer2, fallback to base" .format(gh_id, len(sub_df))) sub_df = base_strategy_df.query(f'gh_id == "{gh_id}"') sub_df['score'] = sub_df['sort'] sampled_df = sub_df.sample(n=SEND_N, weights=sub_df['score']) sampled_df['sort'] = range(1, len(sampled_df) + 1) sampled_dfs.append(sampled_df) extend_df = pd.concat(sampled_dfs) extend_df['strategy_key'] = EXPLORE2_GROUP_NAME extend_df['dt_version'] = dt_version result_df = extend_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']] return result_df def rank_for_base(run_dt, run_hour, project, stats_table, rank_table, stg_key): stats_df = process_reply_stats(project, stats_table, STATS_PERIOD_DAYS, run_dt) # TODO: support to set base manually dt_version = f'{run_dt}{run_hour}' # 获取当前base信息, 策略表dt_version(ctime partition)采用当前时间 base_strategy_df = get_last_strategy_result( project, rank_table, dt_version, stg_key) default_stats_df = stats_df.query('gh_id == "default"') # 在账号内排序,决定该账号(包括default)的base利用内容 # 排序过程中,确保当前base策略参与排序,因此先关联再过滤 gh_ids_str = ','.join(f'"{x}"' for x in GH_IDS) stats_df = stats_df.query(f'gh_id in ({gh_ids_str})') stats_with_strategy_df = stats_df \ .merge( base_strategy_df, on=['gh_id', 'video_id'], how='left') \ .query('strategy_key.notna() or score > 0.1') # 合并default和分账号数据 grouped_stats_df = pd.concat([default_stats_df, stats_with_strategy_df]).reset_index() def set_top_n(group, n=2): group_sorted = group.sort_values(by='score', ascending=False) top_n = group_sorted.head(n) top_n['sort'] = range(1, len(top_n) + 1) return top_n ranked_df = grouped_stats_df.groupby('gh_id').apply(set_top_n, SEND_N) ranked_df = ranked_df.reset_index(drop=True) # ranked_df['sort'] = grouped_stats_df.groupby('gh_id')['score'].rank(ascending=False) ranked_df['strategy_key'] = stg_key ranked_df['dt_version'] = dt_version ranked_df = ranked_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'score']] return ranked_df def check_result_data(df): check_unsafe_video(df, False) for gh_id in GH_IDS + ('default',): for key in (EXPLORE1_GROUP_NAME, EXPLORE2_GROUP_NAME, BASE_GROUP_NAME): sub_df = df.query(f'gh_id == "{gh_id}" and strategy_key == "{key}"') if len(sub_df) != SEND_N: raise Exception(f"Result not enough for gh_id[{gh_id}]") def rank_for_base_designate(run_dt, run_hour, stg_key): dt_version = f'{run_dt}{run_hour}' ranked_df = pd.DataFrame() # 初始化一个空的 DataFrame # 定义每个 gh_id 的视频信息 gh_id_data = { 'SongYi': [ (21613310, 0.6, 1), (21816708, 0.5, 2) ], 'XinYi': [ (21176894, 0.6, 1), (21072591, 0.5, 2) ], '17512006748': [ (21176894, 0.6, 1), (21816708, 0.5, 2) ], '18810931977': [ (21176894, 0.6, 1), (21072591, 0.5, 2) ], '15146364945': [ (23970780, 0.6, 1), (36695948, 0.5, 2) ], 'lky': [ (21176894, 0.6, 1), (21072591, 0.5, 2) ], '19270839710': [ (12794884, 0.6, 1), (13437896, 0.5, 2) ], 'ManShiGuang': [ (21613310, 0.6, 1), (21816708, 0.5, 2) ], 'ShengHuoLeQu': [ (21613310, 0.6, 1), (21816708, 0.5, 2) ], '16524700048': [ (21613310, 0.6, 1), (21816708, 0.5, 2) ], '16584214894':[ (23970780, 0.6, 1), (36695948, 0.5, 2) ] } # 默认视频信息 default_data = [ (12794884, 0.6, 1), (13788955, 0.5, 2) ] # 遍历 gh_id 列表 for gh_id in GH_IDS + ('default',): if gh_id in gh_id_data: data_to_use = gh_id_data[gh_id] else: data_to_use = default_data # 创建 DataFrame 并拼接 for video_id, score, sort in data_to_use: temp_df = pd.DataFrame({ 'strategy_key': [stg_key], 'dt_version': [dt_version], 'gh_id': [gh_id], 'sort': [sort], 'video_id': [video_id], 'score': [score] }) ranked_df = pd.concat([ranked_df, temp_df], ignore_index=True) return ranked_df def build_and_transfer_data(run_dt, run_hour, project, **kwargs): dt_version = f'{run_dt}{run_hour}' dry_run = kwargs.get('dry_run', False) # layer1_rank = rank_for_layer1(run_dt, run_hour, ODS_PROJECT, EXPLORE_POOL_TABLE) # layer2_rank = rank_for_layer2(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_WE_COM_RANK_RESULT_TABLE) # base_rank = rank_for_base(run_dt, run_hour, ODS_PROJECT, GH_REPLY_STATS_TABLE, ODPS_WE_COM_RANK_RESULT_TABLE,BASE_GROUP_NAME) layer1_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE1_GROUP_NAME) layer2_rank = rank_for_base_designate(run_dt, run_hour, EXPLORE2_GROUP_NAME) base_rank = rank_for_base_designate(run_dt, run_hour, BASE_GROUP_NAME) final_rank_df = pd.concat([layer1_rank, layer2_rank, base_rank]).reset_index(drop=True) check_result_data(final_rank_df) odps_instance = get_odps_instance(project) odps_ranked_df = odps.DataFrame(final_rank_df) video_df = get_dataframe_from_odps('videoods', 'wx_video') video_df['cover_url'] = video_df['cover_img_path'] + CDN_IMG_OPERATOR video_df = video_df['id', 'title', 'cover_url'] final_df = odps_ranked_df.join(video_df, on=('video_id', 'id')) final_df = final_df.to_pandas() final_df = final_df[['strategy_key', 'dt_version', 'gh_id', 'sort', 'video_id', 'title', 'cover_url', 'score']] # reverse sending order final_df['sort'] = SEND_N + 1 - final_df['sort'] if dry_run: print(final_df[['strategy_key', 'gh_id', 'sort', 'video_id', 'score', 'title']]) return # save to ODPS t = odps_instance.get_table(ODPS_WE_COM_RANK_RESULT_TABLE) part_spec_dict = {'dt': run_dt, 'hour': run_hour, 'ctime': dt_version} part_spec = ','.join(['{}={}'.format(k, part_spec_dict[k]) for k in part_spec_dict.keys()]) with t.open_writer(partition=part_spec, create_partition=True, overwrite=True) as writer: writer.write(list(final_df.itertuples(index=False))) # sync to MySQL data_to_insert = [tuple(row) for row in final_df.itertuples(index=False)] data_columns = list(final_df.columns) mysql = MysqlHelper(CONFIG.MYSQL_GROWTH_INFO) mysql.batch_insert(RDS_RANK_RESULT_TABLE, data_to_insert, data_columns) def main_loop(): argparser = ArgumentParser() argparser.add_argument('-n', '--dry-run', action='store_true') args = argparser.parse_args() try: now_date = datetime.today() LOGGER.info(f"开始执行: {datetime.strftime(now_date, '%Y-%m-%d %H:%M')}") now_hour = now_date.strftime("%H") last_date = now_date - timedelta(1) last_dt = last_date.strftime("%Y%m%d") # 查看当前天级更新的数据是否已准备好 # 当前上游统计表为天级更新,但字段设计为兼容小时级 h_data_count = check_data_partition(ODS_PROJECT, GH_REPLY_STATS_TABLE, last_dt, '00') if h_data_count > 0: LOGGER.info('上游数据表查询数据条数={},开始计算'.format(h_data_count)) run_dt = now_date.strftime("%Y%m%d") LOGGER.info(f'run_dt: {run_dt}, run_hour: {now_hour}') build_and_transfer_data(run_dt, now_hour, ODS_PROJECT, dry_run=args.dry_run) LOGGER.info('数据更新完成') else: LOGGER.info("上游数据未就绪,等待60s") Timer(60, main_loop).start() return except Exception as e: LOGGER.error(f"数据更新失败, exception: {e}, traceback: {traceback.format_exc()}") if CONFIG.ENV_TEXT == '开发环境' or args.dry_run: return send_msg_to_feishu( webhook=CONFIG.FEISHU_ROBOT['growth_task_robot'].get('webhook'), key_word=CONFIG.FEISHU_ROBOT['growth_task_robot'].get('key_word'), msg_text=f"rov-offline{CONFIG.ENV_TEXT} - 数据更新失败\n" f"exception: {e}\n" f"traceback: {traceback.format_exc()}" ) if __name__ == '__main__': LOGGER.info("%s 开始执行" % os.path.basename(__file__)) LOGGER.info(f"environment: {CONFIG.ENV_TEXT}") main_loop()