import datetime import traceback import multiprocessing from threading import Timer from utils import RedisHelper, data_check, get_feature_data, send_msg_to_feishu, send_msg_to_feishu_new from config import set_config from log import Log config_, _ = set_config() log_ = Log() redis_helper = RedisHelper() features = [ 'apptype', 'videoid', 'sharerate_all', 'sharerate_ad' ] features_new = [ 'apptype', 'videoid', 'adrate', 'sharerate', 'adrate_share' ] features_with_out = [ 'apptype', 'videoid', 'adrate', # 出广告的概率 'outrate', # 被直接跳出的概率 'adrate_out' # 被直接跳出时出广告的概率 ] def get_top10_abnormal_videos_return(dt, filter_param): """获取昨日各端top10中的异常视频(裂变视频)""" abnormal_video_project = config_.ad_model_data['top10_videos'].get('project') abnormal_video_table = config_.ad_model_data['top10_videos'].get('table') abnormal_video_features = [ 'apptype', 'videoid', 'yesterday_return', 'rank', 'multiple' ] data_count = data_check(project=abnormal_video_project, table=abnormal_video_table, dt=dt) top10_abnormal_videos = {} if data_count > 0: abnormal_video_df = get_feature_data(project=abnormal_video_project, table=abnormal_video_table, features=abnormal_video_features, dt=dt) abnormal_video_df['multiple'].fillna(0, inplace=True) abnormal_video_df['apptype'] = abnormal_video_df['apptype'].astype(int) abnormal_video_df['videoid'] = abnormal_video_df['videoid'].astype(int) abnormal_video_df['yesterday_return'] = abnormal_video_df['yesterday_return'].astype(int) abnormal_video_df['rank'] = abnormal_video_df['rank'].astype(int) abnormal_video_df['multiple'] = abnormal_video_df['multiple'].astype(float) app_type_list = list(set(abnormal_video_df['apptype'].tolist())) for app_type in app_type_list: app_type_df = abnormal_video_df[abnormal_video_df['apptype'] == app_type] app_type_df = app_type_df.sort_values(by=['rank'], ascending=True) # print(app_type_df) temp_video_id_list = [] for index, item in app_type_df.iterrows(): # print(item['rank'], item['videoid'], item['multiple']) if item['multiple'] > filter_param: # print(item['videoid'], item['multiple']) abnormal_video_id_list = temp_video_id_list.copy() abnormal_video_id_list.append(int(item['videoid'])) top10_abnormal_videos[app_type] = abnormal_video_id_list temp_video_id_list.append(int(item['videoid'])) else: temp_video_id_list.append(int(item['videoid'])) # print(top10_abnormal_videos) log_.info(f"top10_abnormal_videos = {top10_abnormal_videos}") return top10_abnormal_videos def predict_video_share_rate(video_initial_df, dt, data_key, data_param, top10_abnormal_videos): """预估视频有广告时分享率""" # 获取对应的视频特征 video_df = video_initial_df.copy() video_df['apptype'] = video_df['apptype'].astype(int) video_df = video_df[video_df['apptype'] == int(data_param)] log_.info(f"video_df length: {len(video_df)}") video_df['sharerate_all'].fillna(0, inplace=True) video_df['sharerate_ad'].fillna(0, inplace=True) video_df['sharerate_all'] = video_df['sharerate_all'].astype(float) video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float) # 获取有广告时所有视频近30天的分享率 ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad'].values[0] video_df = video_df[video_df['videoid'] != 'allvideos'] # 剔除异常视频数据 video_df['videoid'] = video_df['videoid'].astype(int) top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None) # print(int(data_param), len(video_df), top10_abnormal_video_ids) if top10_abnormal_video_ids is not None: video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)] # print(len(video_df)) # 计算视频有广告时分享率 video_df['video_ad_share_rate'] = \ video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all'] video_df['video_ad_share_rate'].fillna(0, inplace=True) # log_.info(f"video_df: {video_df}") video_df = video_df[video_df['video_ad_share_rate'] != 0] log_.info(f"video_df filtered 0 length: {len(video_df)}") # 结果写入redis key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}" redis_data = {} for index, item in video_df.iterrows(): redis_data[int(item['videoid'])] = item['video_ad_share_rate'] group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean() redis_data[-1] = group_ad_share_rate_mean # 异常视频给定值:mean/3 if top10_abnormal_video_ids is not None: abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1) print(data_key, data_param, abnormal_video_param) for abnormal_video_id in top10_abnormal_video_ids: print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param) redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param log_.info(f"redis_data count: {len(redis_data)}") if len(redis_data) > 0: redis_helper = RedisHelper() redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600) return video_df def update_videos_data(project, table, dt, update_params, top10_abnormal_videos): """预估视频有广告时分享率""" # 获取视频特征 video_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt) for data_key, data_param in update_params.items(): log_.info(f"data_key = {data_key} update start...") predict_video_share_rate(video_initial_df=video_initial_df, dt=dt, data_key=data_key, data_param=data_param, top10_abnormal_videos=top10_abnormal_videos) log_.info(f"data_key = {data_key} update end!") def predict_video_share_rate_new(video_initial_df, dt, data_key, data_param, top10_abnormal_videos): """预估视频有广告时被分享率""" # 获取对应的视频特征 video_df = video_initial_df.copy() video_df['apptype'] = video_df['apptype'].astype(int) video_df = video_df[video_df['apptype'] == int(data_param)] log_.info(f"video_df length: {len(video_df)}") video_df['adrate'].fillna(0, inplace=True) video_df['sharerate'].fillna(0, inplace=True) video_df['adrate_share'].fillna(0, inplace=True) video_df['adrate'] = video_df['adrate'].astype(float) video_df['sharerate'] = video_df['sharerate'].astype(float) video_df['adrate_share'] = video_df['adrate_share'].astype(float) # 剔除异常视频数据 video_df['videoid'] = video_df['videoid'].astype(int) top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None) # print(int(data_param), len(video_df), top10_abnormal_video_ids) if top10_abnormal_video_ids is not None: video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)] # print(len(video_df)) # 计算视频有广告时被分享率 video_df = video_df[video_df['adrate'] != 0] video_df['video_ad_share_rate'] = \ video_df['adrate_share'] * video_df['sharerate'] / video_df['adrate'] video_df['video_ad_share_rate'].fillna(0, inplace=True) # log_.info(f"video_df: {video_df}") video_df = video_df[video_df['video_ad_share_rate'] != 0] log_.info(f"video_df filtered 0 length: {len(video_df)}") # 结果写入redis key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}" redis_data = {} for index, item in video_df.iterrows(): redis_data[int(item['videoid'])] = item['video_ad_share_rate'] group_ad_share_rate_mean = video_df['video_ad_share_rate'].mean() redis_data[-1] = group_ad_share_rate_mean # 异常视频给定值:mean/3 if top10_abnormal_video_ids is not None: abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1) print(data_key, data_param, abnormal_video_param) for abnormal_video_id in top10_abnormal_video_ids: print(abnormal_video_id, group_ad_share_rate_mean, group_ad_share_rate_mean * abnormal_video_param) redis_data[int(abnormal_video_id)] = group_ad_share_rate_mean * abnormal_video_param log_.info(f"redis_data count: {len(redis_data)}") if len(redis_data) > 0: redis_helper = RedisHelper() redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600) return video_df def update_videos_data_new(project, table, dt, update_params, top10_abnormal_videos): """预估视频有广告时分享率""" # 获取视频特征 video_initial_df = get_feature_data(project=project, table=table, features=features_new, dt=dt) for data_key, data_param in update_params.items(): log_.info(f"data_key = {data_key} update start...") predict_video_share_rate_new(video_initial_df=video_initial_df, dt=dt, data_key=data_key, data_param=data_param, top10_abnormal_videos=top10_abnormal_videos) log_.info(f"data_key = {data_key} update end!") def predict_video_out_rate(video_initial_df, dt, data_key, data_param, top10_abnormal_videos): """预估视频有广告时不被直接跳出的概率""" # 获取对应的视频特征 video_df = video_initial_df.copy() video_df['apptype'] = video_df['apptype'].astype(int) video_df = video_df[video_df['apptype'] == int(data_param)] log_.info(f"video_df length: {len(video_df)}") video_df['adrate'].fillna(0, inplace=True) video_df['outrate'].fillna(0, inplace=True) video_df['adrate_out'].fillna(0, inplace=True) video_df['adrate'] = video_df['adrate'].astype(float) video_df['outrate'] = video_df['outrate'].astype(float) video_df['adrate_out'] = video_df['adrate_out'].astype(float) # 剔除异常视频数据 video_df['videoid'] = video_df['videoid'].astype(int) top10_abnormal_video_ids = top10_abnormal_videos.get(int(data_param), None) # print(int(data_param), len(video_df), top10_abnormal_video_ids) if top10_abnormal_video_ids is not None: video_df = video_df[~video_df['videoid'].isin(top10_abnormal_video_ids)] # print(len(video_df)) # 计算视频有广告时被直接跳出的概率 video_df = video_df[video_df['adrate'] != 0] video_df = video_df[video_df['adrate_out'] != 0] video_df['video_ad_out_rate'] = \ video_df['adrate_out'] * video_df['outrate'] / video_df['adrate'] video_df['video_ad_out_rate'].fillna(0, inplace=True) # 计算视频有广告时不被直接跳出的概率 video_df['video_ad_no_out_rate'] = 1 - video_df['video_ad_out_rate'] # print(len(video_df)) # video_df = video_df[video_df['video_ad_no_out_rate'] != 0] # log_.info(f"video_df: {video_df}") log_.info(f"video_df filtered 0 length: {len(video_df)}") # video_df = video_df[video_df['video_ad_no_out_rate'] != 1] # log_.info(f"video_df: {video_df}") # log_.info(f"video_df filtered 0 length: {len(video_df)}") # 结果写入redis key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{data_key}:{dt}" redis_data = {} for index, item in video_df.iterrows(): redis_data[int(item['videoid'])] = item['video_ad_no_out_rate'] group_ad_out_rate_mean = video_df['video_ad_no_out_rate'].mean() redis_data[-1] = group_ad_out_rate_mean # 异常视频给定值:mean/3 if top10_abnormal_video_ids is not None: abnormal_video_param = config_.AD_ABNORMAL_VIDEOS_PARAM.get(data_key, 1) print(data_key, data_param, abnormal_video_param) for abnormal_video_id in top10_abnormal_video_ids: print(abnormal_video_id, group_ad_out_rate_mean, group_ad_out_rate_mean * abnormal_video_param) redis_data[int(abnormal_video_id)] = group_ad_out_rate_mean * abnormal_video_param log_.info(f"redis_data count: {len(redis_data)}") if len(redis_data) > 0: redis_helper = RedisHelper() redis_helper.add_data_with_zset(key_name=key_name, data=redis_data, expire_time=2 * 24 * 3600) return video_df def update_videos_data_with_out(project, table, dt, update_params, top10_abnormal_videos): """预估视频有广告时被直接跳出的概率""" # 获取视频特征 video_initial_df = get_feature_data(project=project, table=table, features=features_with_out, dt=dt) for data_key, data_param in update_params.items(): log_.info(f"data_key = {data_key} update start...") predict_video_out_rate(video_initial_df=video_initial_df, dt=dt, data_key=data_key, data_param=data_param, top10_abnormal_videos=top10_abnormal_videos) log_.info(f"data_key = {data_key} update end!") def timer_check(dt, video_key, video_params, top10_abnormal_videos): log_.info(f"video_key = {video_key}") project = config_.ad_model_data[video_key].get('project') table = config_.ad_model_data[video_key].get('table') # 查看当前更新的数据是否已准备好 data_count = data_check(project=project, table=table, dt=dt) if data_count > 0: log_.info(f"ad video data count = {data_count}") # 数据准备好,进行更新 if video_key == 'videos_data_alladtype': update_videos_data_new(project=project, table=table, dt=dt, update_params=video_params, top10_abnormal_videos=top10_abnormal_videos) elif video_key == 'videos_data_with_out_alladtype': update_videos_data_with_out(project=project, table=table, dt=dt, update_params=video_params, top10_abnormal_videos=top10_abnormal_videos) else: update_videos_data(project=project, table=table, dt=dt, update_params=video_params, top10_abnormal_videos=top10_abnormal_videos) log_.info(f"video_key = {video_key} ad video data update end!") msg_list = [ f"env: rov-offline {config_.ENV_TEXT}", f"video_key: {video_key}", f"now_date: {dt}", f"finished time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}", ] send_msg_to_feishu_new( webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'), key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'), title='广告模型视频分享率预测数据更新完成', msg_list=msg_list ) else: # 数据没准备好,1分钟后重新检查 Timer(60, timer_check, args=[dt, video_key, video_params, top10_abnormal_videos]).start() def main(): try: now_date = datetime.datetime.today() dt = datetime.datetime.strftime(now_date, '%Y%m%d') log_.info(f"now_date: {dt}") # 获取昨天top10中的异常视频(裂变视频) # top10_abnormal_videos = get_top10_abnormal_videos_return( # dt=dt, filter_param=config_.ad_model_data['top10_videos'].get('abnormal_filter_param') # ) # 暂停1.5倍回流视频减少广告策略 top10_abnormal_videos = {} update_params = config_.AD_VIDEO_DATA_PARAMS pool = multiprocessing.Pool(processes=len(update_params)) for video_key, video_params in update_params.items(): pool.apply_async( func=timer_check, args=(dt, video_key, video_params, top10_abnormal_videos) ) pool.close() pool.join() # for video_key, video_params in update_params.items(): # timer_check(dt, video_key, video_params, top10_abnormal_videos) except Exception as e: log_.error(f"视频分享率预测数据更新失败, exception: {e}, traceback: {traceback.format_exc()}") msg_list = [ f"env: rov-offline {config_.ENV_TEXT}", f"now time: {datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d %H:%M:%S')}", f"exception: {e}", f"traceback: {traceback.format_exc()}", ] send_msg_to_feishu_new( webhook=config_.FEISHU_ROBOT['ad_video_update_robot'].get('webhook'), key_word=config_.FEISHU_ROBOT['ad_video_update_robot'].get('key_word'), title='广告模型视频分享率预测数据更新失败', msg_list=msg_list ) if __name__ == '__main__': # timer_check() main()