import datetime

import numpy as np
import pandas as pd
from odps import ODPS
from utils import data_check, get_feature_data, send_msg_to_feishu, RedisHelper
from config import set_config
from log import Log
config_, _ = set_config()
log_ = Log()
redis_helper = RedisHelper()


def predict_user_group_share_rate(dt, app_type):
    """预估用户组对应的有广告时分享率"""
    # 获取用户组特征
    project = config_.ad_model_data['users_share_rate'].get('project')
    table = config_.ad_model_data['users_share_rate'].get('table')
    features = [
        'apptype',
        'group',
        'sharerate_all',
        'sharerate_ad'
    ]
    user_group_df = get_feature_data(project=project, table=table, features=features, dt=dt)
    user_group_df['apptype'] = user_group_df['apptype'].astype(int)
    user_group_df = user_group_df[user_group_df['apptype'] == app_type]
    user_group_df['sharerate_all'] = user_group_df['sharerate_all'].astype(float)
    user_group_df['sharerate_ad'] = user_group_df['sharerate_ad'].astype(float)
    # 获取有广告时所有用户组近30天的分享率
    ad_all_group_share_rate = user_group_df[user_group_df['group'] == 'allmids']['sharerate_ad'].values[0]
    user_group_df = user_group_df[user_group_df['group'] != 'allmids']
    # 计算用户组有广告时分享率
    user_group_df['group_ad_share_rate'] = \
        user_group_df['sharerate_ad'] * float(ad_all_group_share_rate) / user_group_df['sharerate_all']
    return user_group_df


def predict_video_share_rate(dt, app_type):
    """预估视频有广告时分享率"""
    # 获取视频特征
    project = config_.ad_model_data['videos_share_rate'].get('project')
    table = config_.ad_model_data['videos_share_rate'].get('table')
    features = [
        'apptype',
        'videoid',
        'sharerate_all',
        'sharerate_ad'
    ]
    video_df = get_feature_data(project=project, table=table, features=features, dt=dt)
    video_df['apptype'] = video_df['apptype'].astype(int)
    video_df = video_df[video_df['apptype'] == app_type]
    video_df['sharerate_all'] = video_df['sharerate_all'].astype(float)
    video_df['sharerate_ad'] = video_df['sharerate_ad'].astype(float)
    # 获取有广告时所有视频近30天的分享率
    ad_all_videos_share_rate = video_df[video_df['videoid'] == 'allvideos']['sharerate_ad'].values[0]
    video_df = video_df[video_df['videoid'] != 'allvideos']
    # 计算视频有广告时分享率
    video_df['video_ad_share_rate'] = \
        video_df['sharerate_ad'] * float(ad_all_videos_share_rate) / video_df['sharerate_all']
    return video_df


def predict_ad_group_video():
    now_date = datetime.datetime.today()
    dt = datetime.datetime.strftime(now_date, '%Y%m%d')
    log_.info(f"dt = {dt}")
    # 获取用户组预测值
    group_key_name = f"{config_.KEY_NAME_PREFIX_AD_GROUP}{dt}"
    group_data = redis_helper.get_all_data_from_zset(key_name=group_key_name, with_scores=True)
    if group_data is None:
        log_.info(f"group data is None!")
    group_df = pd.DataFrame(data=group_data, columns=['group', 'group_ad_share_rate'])
    group_df = group_df[group_df['group'] != 'mean_group']
    log_.info(f"group_df count = {len(group_df)}")
    # 获取视频预测值
    video_key_name = f"{config_.KEY_NAME_PREFIX_AD_VIDEO}{dt}"
    video_data = redis_helper.get_all_data_from_zset(key_name=video_key_name, with_scores=True)
    if video_data is None:
        log_.info(f"video data is None!")
    video_df = pd.DataFrame(data=video_data, columns=['videoid', 'video_ad_share_rate'])
    video_df = video_df[video_df['videoid'] != -1]
    log_.info(f"video_df count = {len(video_df)}")
    predict_df = video_df
    threshold_data = {}
    all_group_data = []
    for index, item in group_df.iterrows():
        predict_df[item['group']] = predict_df['video_ad_share_rate'] * item['group_ad_share_rate']
        # 获取分组对应的均值作为阈值
        threshold_data[item['group']] = predict_df[item['group']].mean()
        all_group_data.extend(predict_df[item['group']].tolist())
    threshold_data['mean_group'] = np.mean(all_group_data)
    log_.info(f"threshold_data = {threshold_data}")
    # 将阈值写入redis
    for key, val in threshold_data.items():
        key_name = f"{config_.KEY_NAME_PREFIX_AD_THRESHOLD}{key}"
        redis_helper.set_data_to_redis(key_name=key_name, value=val, expire_time=2 * 24 * 3600)

    predict_df.to_csv('./data/ad_user_video_predict.csv')
    return predict_df


if __name__ == '__main__':
    predict_df = predict_ad_group_video()