# coding utf-8 import sys import math import traceback import pandas as pd from utils import send_msg_to_feishu from config import set_config from log import Log config_, _ = set_config() log_ = Log() features = [ 'apptype', 'videoid', 'preview人数', # 过去24h预曝光人数 'view人数', # 过去24h曝光人数 'play人数', # 过去24h播放人数 'share人数', # 过去24h分享人数 '回流人数', # 过去24h分享,过去24h回流人数 'preview次数', # 过去24h预曝光次数 'view次数', # 过去24h曝光次数 'play次数', # 过去24h播放次数 'share次数', # 过去24h分享次数 'platform_return', 'platform_preview', 'platform_preview_total', 'platform_show', 'platform_show_total', 'platform_view', 'platform_view_total', ] def data_group(data_path): """将数据按照videoid聚合(求和)""" f = open(data_path) index = 0 data_dict = {} while True: line = f.readline() if not line: break if index == 0: index += 1 continue index += 1 items = line.strip().split(",") # print(items) if len(items) < len(features): continue video_id = items[1] if video_id not in data_dict: data_dict[video_id] = {'videoid': video_id} for i, feature in enumerate(features): if feature in ['apptype', 'videoid']: continue data_dict[video_id][feature] = int(float(items[i])) else: for i, feature in enumerate(features): if feature in ['apptype', 'videoid']: continue data_dict[video_id][feature] = data_dict[video_id][feature] + int(float(items[i])) f.close() data_list = [item for video_id, item in data_dict.items()] data_df = pd.DataFrame(data_list) return data_df def cal_score(data_df): """计算score""" df = data_df.copy() # share_rate_view = (share+1)/(view+1000) df['share_rate_view'] = (df['share人数'] + 1) / (df['view人数'] + 1000) # back_rate = (return+1)/(share+10) df['back_rate'] = (df['回流人数'] + 1) / (df['share人数'] + 10) df['log_back'] = (df['回流人数'] + 1).apply(math.log) # score1 = 回流/(view+10) df['24h_score1'] = df['回流人数'] / (df['view人数'] + 10) # score2 = share/view * back_rate * logback df['24h_score2'] = df['share_rate_view'] * df['back_rate'] * df['log_back'] score_df = df[['videoid', '24h_score1', '24h_score2']] # print(score_df) return score_df if __name__ == "__main__": try: now_date = sys.argv[1] log_.info(f"now_date: {now_date}") data_path = f"./data/24h_video_data_{now_date}.csv" data_df = data_group(data_path=data_path) log_.info(f"24h data_df shape: {data_df.shape}") hour_score_path = f"./data/24h_score_{now_date}.csv" score_df = cal_score(data_df=data_df) score_df.to_csv(hour_score_path, index=False) log_.info(f"24h score_df shape: {score_df.shape}") except Exception as e: log_.error(f"rank 24h分值更新失败, exception: {e}, traceback: {traceback.format_exc()}") send_msg_to_feishu( webhook=config_.FEISHU_ROBOT['server_robot'].get('webhook'), key_word=config_.FEISHU_ROBOT['server_robot'].get('key_word'), msg_text=f"rov-offline{config_.ENV_TEXT} - rank 24h分值更新失败\n" f"exception: {e}\n" f"traceback: {traceback.format_exc()}" )