import pandas as pd from utils import get_data_from_odps features = [ 'apptype', 'subsessionid', 'mid', 'videoid', 'ad_mid', 'share_videoid', 'mid_preview_count_30day', 'mid_view_count_30day', 'mid_view_count_pv_30day', 'mid_play_count_30day', 'mid_play_count_pv_30day', 'mid_share_count_30day', 'mid_share_count_pv_30day', 'mid_return_count_30day', 'mid_share_rate_30day', 'mid_return_rate_30day', 'video_preview_count_uv_30day', 'video_preview_count_pv_30day', 'video_view_count_uv_30day', 'video_view_count_pv_30day', 'video_play_count_uv_30day', 'video_play_count_pv_30day', 'video_share_count_uv_30day', 'video_share_count_pv_30day', 'video_return_count_30day', 'video_ctr_uv_30day', 'video_ctr_pv_30day', 'video_share_rate_uv_30day', 'video_share_rate_pv_30day', 'video_return_rate_30day', ] train_feature = [ 'mid_preview_count_30day', 'mid_view_count_30day', 'mid_view_count_pv_30day', 'mid_play_count_30day', 'mid_play_count_pv_30day', 'mid_share_count_30day', 'mid_share_count_pv_30day', 'mid_return_count_30day', 'mid_share_rate_30day', 'mid_return_rate_30day', 'video_preview_count_uv_30day', 'video_preview_count_pv_30day', 'video_view_count_uv_30day', 'video_view_count_pv_30day', 'video_play_count_uv_30day', 'video_play_count_pv_30day', 'video_share_count_uv_30day', 'video_share_count_pv_30day', 'video_return_count_30day', 'video_ctr_uv_30day', 'video_ctr_pv_30day', 'video_share_rate_uv_30day', 'video_share_rate_pv_30day', 'video_return_rate_30day', 'ad_status', 'share_status', ] def get_feature_data(project, table, features, dt): """获取特征数据""" records = get_data_from_odps(date=dt, project=project, table=table) feature_data = [] for record in records: item = {} for feature_name in features: item[feature_name] = record[feature_name] feature_data.append(item) feature_df = pd.DataFrame(feature_data) return feature_df def daily_data_process(project, table, features, dt, app_type): """每日特征处理""" print('step 1: get feature data') feature_initial_df = get_feature_data(project=project, table=table, features=features, dt=dt) print(f"feature_initial_df shape: {feature_initial_df.shape}") print('step 2: process') feature_initial_df['apptype'] = feature_initial_df['apptype'].astype(int) feature_df = feature_initial_df[feature_initial_df['apptype'] == app_type] # 增加此次是否有广告字段 'ad_status' 1: 有广告, 0: 无广告 feature_df['ad_status'] = feature_df.apply(func=lambda x: 1 if x['ad_mid'] == x['mid'] else 0) feature_df['share_videoid'].fillna(0, inplace=True) feature_df['share_videoid'] = feature_df['share_videoid'].astype(int) feature_df['videoid'] = feature_df['videoid'].astype(int) # 增加此次是否分享了该视频 'share_status' 1: 分享, 0: 为分享 feature_df['share_status'] = feature_df.apply(func=lambda x: 1 if x['share_videoid'] == x['videoid'] else 0) # 缺失值填充 feature_df.fillna(0, inplace=True) # 数据类型校正 type_int_columns = [ 'mid_preview_count_30day', 'mid_view_count_30day', 'mid_view_count_pv_30day', 'mid_play_count_30day', 'mid_play_count_pv_30day', 'mid_share_count_30day', 'mid_share_count_pv_30day', 'mid_return_count_30day', 'video_preview_count_uv_30day', 'video_preview_count_pv_30day', 'video_view_count_uv_30day', 'video_view_count_pv_30day', 'video_play_count_uv_30day', 'video_play_count_pv_30day', 'video_share_count_uv_30day', 'video_share_count_pv_30day', 'video_return_count_30day', ] for column_name in type_int_columns: feature_df[column_name].astype(int) type_float_columns = [ 'mid_share_rate_30day', 'mid_return_rate_30day', 'video_ctr_uv_30day', 'video_ctr_pv_30day', 'video_share_rate_uv_30day', 'video_share_rate_pv_30day', 'video_return_rate_30day', ] for column_name in type_float_columns: feature_df[column_name].astype(float) print(f"feature_df shape: {feature_df.shape}") # 获取所需的字段 print('step 3: get train_df') train_df = feature_df[train_feature] print(f"train_df shape: {train_df.shape}") return train_df if __name__ == '__main__': project = 'loghubods' table = 'admodel_data_train' dt = '20230725' df = daily_data_process(project=project, table=table, features=features, dt=dt, app_type=0) print(df.shape) print(df.columns) df.to_csv(f'./data/{dt}.csv')